
Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Leveraging cost matrix structure for hardware implementation of stereo
disparity computation using dynamic programming

W. James MacLean a,*, Siraj Sabihuddin a, Jamin Islam b

a University of Toronto, Department of Electrical & Computer Engineering, Toronto, Canada M5S 3G4
b Ryerson University, Department of Electrical & Computer Engineering, Toronto, Canada M5B 2K3

a r t i c l e i n f o
Article history:
Received 19 December 2008
Accepted 17 March 2010
Available online xxxx

Keywords:
Stereo disparity
Dynamic programming
Field programmable gate arrays
Pipeline processing
Real-time systems
Hardware
1077-3142/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.cviu.2010.03.011

* Corresponding author.
E-mail address: james.maclean@utoronto.ca (W.J.
URL: http://www.wjamesmaclean.net/ (W.J. MacL

Please cite this article in press as: W.J. MacLean
dynamic programming, Comput. Vis. Image Un
a b s t r a c t

Dynamic programming is a powerful method for solving energy minimisation problems in computer
vision, for example stereo disparity computations. While it may be desirable to implement this algorithm
in hardware to achieve frame-rate processing, a naı̈ve implementation may fail to meet timing require-
ments. In this paper, the structure of the cost matrix is examined to provide improved methods of hard-
ware implementation. It is noted that by computing cost matrix entries along anti-diagonals instead of
rows, the cost matrix entries can be computed in a pipelined architecture. Further, if only a subset of
the cost matrix needs to be considered, for example by placing limits on the disparity range (include
neglecting negative disparities by assuming rectified images), the resources required to compute the cost
matrix in parallel can be reduced. Boundary conditions required to allow computing a subset of the cost
matrix are detailed. Finally, a hardware solution of Cox’s maximum-likelihood, dynamic programming
stereo disparity algorithm is implemented to demonstrate the performance achieved. The design pro-
vides high frame rate (>123 fps) estimates for a large disparity range (e.g. 128 pixels), for image sizes
of 640 � 480 pixels, and can be simply extended to work well over 200 fps.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Dynamic programming is an optimisation algorithm that ex-
ploits optimal substructure to greatly reduce the time required to
compute an optimal solution [1]. It has numerous applications,
such as biosequence matching (including DNA sequencing), the
Viterbi algorithm for estimation of hidden Markov models (HMMs),
and stereo disparity estimation in computer vision. Many problems
that can be solved with dynamic programming involve matching
data from two streams, such as the left- and right-image pixels from
scanlines in stereo images, or problems involving matching string
subsequences from two target strings. It should be noted that other
problems share this structure, notable examples are the matrix-
chain multiplication problem, the Needleman–Wunsch algorithm
for biosequence matching, and the Viterbi algorithm for estimating
hidden Markov models. This paper explores a dynamic program-
ming approach applied to the stereo matching problem, and gives
a sample implementation using FPGAs.

Fast, efficient implementations for dynamic programming prob-
lems are of interest, especially in cases where the data rate is high,
as it is in image processing. A number of researchers have made at-
ll rights reserved.

MacLean).
ean).

et al., Leveraging cost matrix str
derstand. (2010), doi:10.1016/j
tempts to accelerate dynamic programming algorithms using
hardware and/or special processors [2–6]. Much of this work has
involved protein and DNA sequence matching [2–5] using an
‘‘edit-distance” cost function for string comparison [7] which
shares the same anti-diagonal parallelism that we exploit in our
approach. In [2] the anti-diagonal structure is used to pipeline
comparison of multiple target strings against a reference string,
but each cost matrix is computed in a row-wise manner. Martins
et al. [4] point out the challenges of adapting processing to the
changing sizes of the anti-diagonals, and propose a block-wise
anti-diagonal approach on a parallel processor architecture to en-
sure good processor utilisation. Anvik et al. [5] identify the anti-
diagonal cost matrix structure as a design pattern and introduce a
framework generator that minimises the development effort re-
quired to adapt this design pattern to specific applications (they
demonstrate three such applications) running on a small array of
four processors. They use a block-wise approach similar to that
of [4]. Two of these approaches involve implementation on FPGAs
[3,6], with both being tested in simulation only. The approach of
[3] uses multiple FPGAs,1 but does not re-map the cost matrix as
we do, resulting in half of the processing elements being idle on
any given cycle. Hoang and Ayala-Rincón et al. [3,6] both use
systolic arrays in their processing architecture, although it is
1 At the time their paper was written, FPGA devices had much smaller capacity

ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011
mailto:james.maclean@utoronto.ca
http://www.wjamesmaclean.net/
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu
http://dx.doi.org/10.1016/j.cviu.2010.03.011

2 W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
pointed out that adapting such arrays for computing only a diago-
nal-band of the cost matrix (as we do by limiting the disparity
range D) is challenging.

Stereo matching has been extensively studied by the computer
vision community. Detailed reviews of existing algorithms have,
thus, also been published by a number of researchers. Gong et al.
[8] provide an overview of general approaches that utilise sparse,
dense, volumetric or level-set algorithms. Furthermore, Seitz
et al. [9] provide a review of multi-view matching methods. Some
image registration techniques also utilise sparse, feature based
matching and are discussed by Zitova and Flusser [10].

The dynamic programming solution presented in this paper is
the ‘‘Dynamic Programming Maximum Likelihood” (DPML) stereo
disparity algorithm by Cox et al. [11]. It is a global and dense dis-
parity estimation algorithm—Scharstein and Szeliski [12] and
Brown et al. [13] provide extensive discussions and comparisons
of similar dynamic programming approaches. These comparisons
demonstrate that dynamic programming provides accurate esti-
mates that compete well even with the best of existing matching
methods. More accurate approaches do exist, however, they tend
to operate at significantly lower speeds (see [14]). Closely related
to the studies by Scharstein and Brown, Lu et al. [15] provide a fur-
ther survey on cost aggregation for matching problems.

In current literature, the most common approaches towards
FPGA hardware stereo matching are based on correlation or area-
based methods. Of these, the most common methods make use
of SAD aggregated cost functions applied to pixel intensities. As
shown by Scharstein and Szeliski in [12] SAD correlation ap-
proaches do not provide very accurate disparity estimates. Typi-
cally these implementations make use of line buffering to align
pixels in a stereo pair for parallel windowing computations. Works
by Miyajima and Maruyama [16], Hariyama et al. [17], Perri et al.
[18], Mitéran et al. [19] [7] and Han et al. [20] all utilise such buf-
fering. Both Perri et al. [18] and Mitéran et al. [19] observe that
neighbouring windows of SAD computations use many of the same
values. These values are stored and re-used as required. Hariyama
et al. [17] define two levels of parallelism to perform coarse to fine
refinement of disparities within localised regions, and thus im-
prove the accuracy. Both Hariyama et al. [17] and Simhadri et al.
[21] utilise adder trees to perform cost and comparison
computations. It is worth noting that adder trees are primarily
useful in situations such as windowing—they do not typically ap-
ply to dynamic programming type solutions. Lee et al. [22] present
an FPGA-based SAD stereo algorithm running at 31 fps for
640 � 480 images with a disparity of 64 pixels, although no quan-
titative accuracy results are given. Most of these implementations
produce results at speeds of approximately 30 fps, although some
go as high as 150 fps on smaller images. Typically, papers that
present these solutions do not present an analysis of accuracy of
their algorithms.

Additional hardware methods use phase based correlation. Díaz
et al. [23], Darabiha et al. [24] and Masrani and MacLean [25] pro-
vide examples of these approaches implemented in hardware.
Phase based methods have the advantage of producing signifi-
cantly better results than SAD algorithms, obtaining results that
compete well with dynamic programming solutions. The problem
with these methods lies in the square root computations
required—these computations are difficult to implement in hard-
ware and come with an associated high resource cost, especially
when implemented in parallel. Both Darabiha et al. [24] and Mas-
rani et al. [25] provide an implementation that uses multi-scale Lo-
cally Weighted Phase Correlation (LWPC). Like SAD based
implementations these phase based approaches achieve approxi-
mate 30 fps performance. Díaz et al. [23] demonstrate an algorithm
that achieves over 200 fps performance but does so by reducing the
search range to only four neighbouring pixels.
Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
A final approach that produces very high frame rates (over
200 fps), on par with the approach presented in this paper, makes
use of the census algorithm (see Woodfill et al. [26]). The census
algorithm computes costs within a pixel neighbourhood using
the census transform—the transform essentially utilises hamming
distance based comparisons. The high frame rates and very simple
computations associated with this approach come with poor accu-
racy. Murphy et al. [27] present a ‘‘low-cost” implementation of
the census algorithm on a Xilinx Spartan-3 FPGA, with perfor-
mance of 40 fps and a disparity range of 20 pixels, with no accuracy
results presented.

To date, no hardware implementations of dynamic program-
ming algorithms appear to have been explored by the vision com-
munity. Furthermore most existing solutions produce relatively
low frame rates of approximately 30 fps at resolutions that are
typically lower than 640 � 480 pixels. They achieve higher frame
rates by sacrificing on accuracy, resolution or disparity search
range. This paper explores a hardware based dynamic program-
ming solution that achieves high frame rate performance with
no compromise on accuracy and limited compromise on disparity
search range or resolution. The solution provides good scaling
characteristics relative to SAD and phase based correlation
approaches.

The rest of this paper is structured as follows. In Section 2 we
describe the structure inherent in a dynamic-programming cost
matrix and how this structure can be exploited to design efficient
hardware. In Section 3 we describe a hardware implementation of
a dynamic programming algorithm for stereo disparity estimation,
showing how the cost matrix structure leads to a fast yet efficient
hardware design. Finally, in Section 4, we give performance results
for the stereo hardware implementation. Further technical details
of the implementation can be found in [28–30].
2. Cost matrix structure

When solving a dynamic programming problem using a bot-
tom-up approach, a typical approach is to build a cost matrix, de-
noted by C. In this matrix element Cij represents the optimal cost of
associating two data elements IL(i) and IR(j). This paper will con-
centrate on computing stereo disparity using these data elements.
Note that IL(i) represents the ith pixel from the left scanline and
IR(j) the jth pixel from the right scanline. Both IL(i) and IR(j) lie with-
in the same scanline (vertical position) in the left and right images.

In computing the cost matrix, an element Cij depends on those
neighbouring elements with lower indices. In computing an opti-
mal cost for element Cij, one assumes that optimal costs have al-
ready been computed for the elements Ci�1,j, Ci,j�1 and Ci�1,j�1,
and computes the optimal cost for the current element in terms
of these. These cost dependencies are shown in Fig. 1. In a tradi-
tional software implementation it is typical to do this row-wise
with a nested loop structure, which computes elements left-to-
right along each row, assuming the results from the previous row
are complete.

This approach assumes that all the data required to compute an
entire row of C is already present. In the case of stereo disparity
computations, this means that the cost value for a particular com-
bination of right/left pixel positions (i and j) in a scanline cannot be
computed unless all previous dependant input pixels have been re-
ceived and their respective costs computed. Even if, for a particular
problem, all the data are available at the outset, the computations
must be done sequentially as each element on the row depends on
the ones before it. While this is not a problem for software de-
signed to run on a serial processor, it hampers efforts to parallelise
cost computations in hardware. It does allow for partial storage of
C, as once a row of C has been computed, only the current row is
ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

Fig. 1. Computing a cost matrix element assumes that the elements immediately
left, above, and above-left have already been computed.

W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx 3

ARTICLE IN PRESS
required for computing the next row. Since the optimal-cost path
can be summarised in a match matrix using fewer bits per element,
the cost matrix C is responsible for most of the memory require-
ments of the algorithm. Therefore, the ability to store only the cur-
rent row of the cost matrix can result in significant resource
savings in a hardware implementation.

The row-wise approach is not the only choice, however. It is
also possible to perform cost computations along anti-diagonals,
that is along elements Cij such that i + j = k where k is a positive
constant, as shown in Fig. 2.

This approach has several advantages. First, computing the
elements of a given anti-diagonal only requires storage of a fixed
number of preceding anti-diagonals—two anti-diagonals in the
case of stereo and longest subsequence matching, although the
matrix-chain multiplication problem requires more than just
the two preceding anti-diagonals. While this can be up to twice
as much storage as just storing the preceding row, it is still far
cheaper than storing the entire cost matrix. If only a limited
range of elements are computed, as in the case of limiting the
disparity range in stereo, storage requirements are further re-
Fig. 2. Cost and match matrix structure for stereo matching using dynamic
programming, for images of width N pixels, and a disparity range of 0. . .D � 1 pixels
(D = 4 in this diagram).

Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
duced. Second, and most important, the computations of the cost
elements along a given anti-diagonal can be computed indepen-
dently of each other, and thus they can be computed in parallel
(see Fig. 2).

This approach does not require all the input pixel data to be
available prior to computing a given anti-diagonal; rather it just re-
quires pixel data fILðiÞ; IRðiÞgk

i¼0 to compute up to the kth anti-diag-
onal. In what follows, the notation AD0 refers to the anti-
diagonal with k = 0, AD1 the anti-diagonal with k = 1, etc. For
example, AD0 can be computed knowing only {IL(0),IR(0)}, AD1
can subsequently be computed once {IL(1),IR(1)} arrive, AD2 can
then be computed once {IL(2),IR(2)} have arrived, and so on.2 This
allows a parallel approach, where the intermediate results (the
cost elements of anti-diagonals) leave the pipeline at the same rate
that the data flow in. This is significant as it means that the entire
cost matrix can, potentially, be computed in the time it takes for all
the data to arrive.

A few facts are worth noting. If the cost matrix is N � N (as in
the case of stereo for images of width N pixels), then there are
2N � 1 anti-diagonals. Also, for a given anti-diagonal, the differ-
ence in the indices i � j for all elements Cij along the anti-diago-
nal will either all be even, or they will all be odd. In the case of
stereo, this suggests that a given anti-diagonal represents even-
valued disparities, or odd-valued disparities, but not both. This
means that two adjacent anti-diagonals encode a full set of dispar-
ities (both odd and even) in a given range. Further, if we are only
interested in elements for which i P j (as in the case of rectified
stereo images), then only cost matrix elements on or below the
main diagonal (see Fig. 2) need be considered. Finally, if we assume
that i � j < D, as in the case of setting an upper limit D on the range
of allowed disparities, then only a band of sub-diagonals in C need
be computed. These two limitations, namely i � j P 0 and i � j < D,
allow hardware resources to be conserved, always an important
consideration in FPGA implementations. The elements Cii along
the main diagonal represent the optimal costs for a disparity of
zero at the ith pixel.
3. Example hardware implementation

In this section a sample FPGA implementation is presented for
the DPML stereo algorithm of [11] (shown in Listings 1 and 2 for
reference).

The comparisons produce cost estimates for each pixel location
based on the cost functions given by Eqs. (1) and (2). IL(x) and IR(x)
are pixel values at position x in a scanline, while d is a disparity
within range: 0. . .D � 1. It is worth noting that the occlusion cost
in Eq. (2) algorithm is analogous to the insertion/deletion costs
in the edit–distance algorithm, mentioned in Section 1.

NOCðILðxÞ; IRðxþ dÞ;rÞ ¼ ðILðxÞ � IRðxþ dÞÞ2r2

4
ð1Þ

OCðPd;r2;/Þ ¼ log
Pd/
ð1� PdÞ

ffiffiffiffiffiffiffi
2p
r2

r
ð2Þ

In Eqs. (1) and (2), r represents a noise variance associated with
the image sensor, Pd is the probability of a given pixel being visible
in both views (i.e. not being occluded in the other view) and / is
the field of view of the camera.

After cost values for all pixel locations are stored in an N � N
cost matrix, C, the backward pass initiates (see Listing 2). Note that
N is the number of pixels in an image scanline. An optimal path is
traced out through an N � N match matrix (M) to compute the ste-
reo disparity estimates. Please refer to [11] for further details.
2 In many stereo applications the left and right cameras are synchronised, so the
pixel data arrive in pairs.

ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

Listing 1. The Cox et al. DPML algorithm [11], forward-pass, in Matlab-like
notation. Cost and match computations for each pixel location in a scanline, over a
disparity range, D.

Listing 2. The Cox DPML algorithm, backward-pass. Computation of optimal
disparity values for pixels, in a scanline, relative to the left image of the stereo
pair. Disparity/occlusion computations makes use of the cost/match computations
in 1.

4 W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
The FPGA implementation described in this paper is based on an
earlier system [31], but leverages the cost matrix structure to dra-
matically improve performance. FPGA implementations of com-
puter vision algorithms have been increasing in recent years, and
in general [32] FPGAs are being utilised increasingly in high-per-
formance computing applications. In image processing, consider-
able speedup is possible due to parallelisation of operations that
would normally occur sequentially in software. The implementa-
tion is pipelined in the sense that it completes the cost-matrix
computation in the time it takes for the pixels from both left-
and right-scanlines to be received. The computed disparity is lim-
ited to a range of 0. . .D � 1, although it will be seen that this is
merely a consideration for resource usage on the FPGA, and D
can be set to the image width if desired, assuming the FPGA re-
sources are sufficient. The choice of D only minimally affects the
total processing rate. This minimal effect is a result of the initial
delay required to align left and right-image pixels for the first
anti-diagonal computation. Barring this small delay, an increase
in D simply adds more hardware in parallel. The implementation
Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
assumes the images are pre-rectified, thus allowing negative dis-
parities to be discarded. In order to confine the final, optimal pair-
ing of pixels (path) to lie within this range, suitable boundary
conditions are required for the diagonal above the main diagonal
and below the D/2-th sub-diagonal. These conditions are described
below in Section 3.3. Costs along a given anti-diagonal are com-
puted in parallel, so D sets an upper limit of NAD = D/2 + 1 on the
number of parallel computation units required. D is assumed to
be even.

The overall architecture of the final implementation (referred to
as DPMLHW(I) in Section 4) is shown in Fig. 3, although in Section
4 results are shown for several intermediate design stages as well.
In the subsequent sub-sections, important aspects of the design are
described in detail.
3.1. Buffering incoming pixels

One important aspect in computing the cost matrix entries in-
volves aligning pixels as they arrive from the left- and right images
in a manner appropriate for computing costs along the current
anti-diagonal. Two buffers, LBUF and RBUF as shown in Fig. 4, are
used for this. For each left–right pair of pixels, two anti-diagonals
(even and odd) are processed. Each time an even-numbered anti-
diagonal is processed, LBUF is shifted left by one, and a new left-
image pixel is inserted in the left-most available slot. Each time
an odd-numbered anti-diagonal is processed, a new right-image
pixel is right-shifted into RBUF. In both cases, the difference in pix-
el intensities of corresponding valid LBUF and RBUF elements are
passed to the parallel cost computation units described in the next
section.

During start up, pixels are also added at the left-most empty
slot of LBUF on odd anti-diagonals until LBUF is full. On alternating
even and odd anti-diagonals, the last and first corresponding ele-
ments of the buffers are marked as invalid to indicate that bound-
ary conditions should be applied instead. In addition, empty buffer
elements in both LBUF and RBUF are marked invalid at the begin-
ning and end of the scanline. An example of the contents of both
LBUF and RBUF during processing of the first four scanlines is
shown in Fig. 5.
3.2. Computing cost matrix elements

Cost matrix values are stored in three arrays of length NAD,
where the first two arrays (CBUF0 and CBUF1) contain the preced-
ing two anti-diagonal’s cost values, and the third array, PMIN/
CMUX, is working memory for the current anti-diagonal, as shown
in Figs. 3 and 6. Fig. 6 shows the parallel-load operation of the cost
array that allows discarding anti-diagonals that are no longer
needed. CBUF0 holds the cost elements for the anti-diagonal
two-before the one currently being computed, and CBUF1 for the
anti-diagonal one-before.

Each cost matrix element is computed based on the non-occlu-
sion cost (NOC) function of the pixels IL(i) and IR(j) (see Eq. (1) and
block PNOC in Figs. 3 and 6). While it might seem obvious to put
this functionality in a lookup table to save resources, having NAD

parallel accesses to such a table is not feasible for realistic values
of D (for example, D = 128), so separate computations are carried
out for each Cij. It is straightforward to re-scale the cost values to
reduce the computation of NOC to one subtraction and one multi-
plication. For each element, the occlusion costs based on Ci�1,j and
Ci,j�1 are compared to the result of adding the NOC to Ci�1,j�1, and
the minimum value is assigned to Cij (see block PMIN/CMUX in
Fig. 3). If the NOC is chosen, 0 is written to the corresponding
element of the match matrix (see Section 3.4), otherwise 1 or 2
is stored to indicate a left- or right-occlusion, respectively.
ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

Fig. 3. Schematic diagram of the final hardware implementation of the DPML algorithm, for disparity range 0. . .D � 1.

Fig. 4. Buffers LBUF and RBUF for storing incoming pixels, shown for the case
D = 16. LBUF is a left-aligned shift register that accepts pixels on every anti-
diagonal, but only shifts out before accepting input on even scanlines. RBUF is also a
shift register, but it only accepts input on odd anti-diagonals.

W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx 5

ARTICLE IN PRESS
Once costs have been computed for the current anti-diagonal,
and corresponding match matrix entries made, the first row of
the cost array (CBUF0) is discarded and the second and third rows
shifted up to make way for cost values in the next anti-diagonal.

3.3. Boundary conditions

Regardless of the value of D, boundary conditions are required
along the first row and first column of the cost matrix, as de-
scribed in Cox’s algorithm. If D < N then boundary conditions
are also required at either end of the array PMIN/CMUX. For
odd anti-diagonals, the first element in the cost array represents
the super-diagonal (the first diagonal above the main diagonal,
indicating a disparity of �1): this element is assigned the cost
Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
of the preceding super-diagonal element plus a fixed occlusion
cost. Similarly, on even anti-diagonals, the last element in the
cost array is assigned the cost of the last element of the previous
even anti-diagonal, plus the fixed occlusion cost. For the initial D/
2 anti-diagonals, where there are less than NAD valid entries in the
anti-diagonal, the cost of the last valid entry of even anti-diago-
nals is just i � OC, where OC is the fixed occlusion cost. In all
cases, bounding cost matrix elements will have a cost assigned
to them as specified in the initialisation phase of Listing 1.

The boundary conditions are important for propagating cost
values that lie within the disparity range being estimated. It should
be noted that the optimal path will never wander outside this
range as the corresponding match matrix entries are automatically
marked as occluded, meaning the backtracking algorithm will (at
worst) follow along these boundaries, but never cross them.

3.4. Match matrix and backtracking

As each cost matrix element is computed, corresponding values
are written into a match matrix, M, which is subsequently used to
backtrack through the optimal path once all cost matrix values
have been computed. The value 0 is stored if the minimum cost
was achieved through the NOC function, else 1 or 2 is stored to
indicate a left- or right-occlusion, respectively. Each element of
M only requires two bits to store, so M uses little in the way of re-
sources. While M is nominally N � N (see Listings 1 and 2), if the
ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

Fig. 5. The contents of LBUF and RBUF are shown for the first four anti-diagonals.
Both buffers are cleared at the start of a scanline, and IR(0), the first pixel from the
right scanline, is inserted into RBUF before processing starts on AD0. AD0: LBUF is
shifted left and IL(0) is inserted in the left-most available position. Adjacent
elements are compared to compute NOC values (see Fig. 6). AD1: The value IR(1) is
shifted into RBUF and value IL(1) is placed in the left-most available position in
LBUF, and the NOC values for AD1 are computed. Insertion of pixels into LBUF on
odd anti-diagonals is only performed until LBUF fills. AD2: LBUF is shifted to the left,
and then value IL(2) is added to the left-most available position, then NOC values for
AD2 are computed. AD3: Value IR(2) is inserted into RBUF, shifting existing values to
the right. Value IL(3) is added to the left-most available position in LBUF, and then
NOC values for AD3 are computed.

Fig. 6. Cost computation dataflow: non-occlusion costs (NOC) are computed for
adjacent elements in LBUF and RBUF and placed in PNOC. These values are
combined with costs from two previous anti-diagonals stored in CBUF, and the
result placed in PMIN/CMUX. Finally, values are transfered from CBUF1 to CBUF0
and the new values from CMUX are transfered to CBUF1.

6 W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
disparity range is limited to 0. . .D � 1 then only N � D + 2 elements
need to be allocated to store Ms values, re-mapping M as shown in
Fig. 2. The backtracking algorithm has been modified to generate
the appropriate indices for the reduced-size match matrix. In
Fig. 3, M is represented by the buffers MBUF0 and MBUF1 (see Sec-
tion 3.7).
3.5. State machine implementation

A state machine, depicted in Fig. 7, is used to control the com-
putation of the cost- and match-matrix elements, and to perform
the backtracking that produces the final disparity map. The state
reset initialises the cost array to store zeros, initialises the appro-
priate boundary conditions in the match matrix and waits for the
first left and right pixels to arrive. Control then passes to the skip
state, which waits for enough pixels to enter LBUF and RBUF so
that computations can begin on anti-diagonal #2. At this point
control alternates between states ad_even and ad_odd, which ap-
ply appropriate boundary conditions, compute costs for the current
anti-diagonal, and update the appropriate match matrix elements.
Since 2N + 1 is always odd, ad_odd is always the current state
when the cost computations are completed. Control passes to the
backtrack state, which works backwards through M generating
the optimal disparity and occlusion maps. Once backtracking is
complete, control returns to reset to await arrival of the next
scanline. A more detailed description of this process, with refer-
ence to Fig. 3, follows.
3.5.1. Forward pass
During the forward-pass, left and right image data for a partic-

ular scanline is obtained from an external memory location
(RTBUF). This memory location is used to store rectified image
data. A counter, ICNT, is utilised to address this memory. A bound-
ary comparator, BCMP, ensures that the counter is appropriately
incremented, decremented or reset so as to remain within the
bounds of the available image dimensions. During an initialisation
phase, image pixels are retrieved from RTBUF and pushed in from
opposing directions into LBUF and RBUF, as described in Sections
3.1 and 3.2. NOC computations take place in parallel in the asyn-
chronous PNOC block and the results of these parallel computa-
tions are stored in a pipeline buffer (PBUF). The minimum of the
three costs is computed by PMIN, and an associated index, repre-
senting the minimum cost, is generated by the cost multiplexer
Fig. 7. Initial concept for state machine used to control cost and match matrix
computation. This state machine is refined in Figs. 8 and 10, the latter representing
the final state machine design.

ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx 7

ARTICLE IN PRESS
(CMUX). Both PMIN and CMUX operate asynchronously. At the fol-
lowing clock cycle these final computed anti-diagonal costs (com-
puted in parallel for each position in the anti-diagonal) are stored
in CBUF. On the incoming clock cycle, the final costs are also stored
into the match buffer (MBUF0 or MBUF1, see Section 3.7) for back-
ward-pass computations. The match buffer is indexed by addresses
generated by the MCNT counter.

Black horizontal arrows and vertical bars at the top and bottom
of the block diagram (Fig. 3) indicate the positions of pipeline reg-
isters. These registers allow cost computations to occur at the same
rate as the rectified image pixels are generated. It should be noted,
though, that a small initial lag exists. This lag is required to fill the
pipeline for the first anti-diagonal computations.
3.5.2. Backward pass
Following the forward-pass, a backward-pass is used to read

data from MBUF0 or MBUF1 (see Section 3.7). The hardware back-
tracks through this buffer for the generation of a final set of dispar-
ity values at each location in a given scanline. The match
Fig. 8. State machine used to control cost and match matrix computation in the
DPMLHW(P) hardware design. Light-coloured states represent the forward-pass, in
which the match matrix elements are computed, and darker-coloured states
represent the backward pass that computes the optimal path through the match
matrix.

Fig. 9. Throughput can be increased by performing the backward pass for a given scanli
figure illustrates the backward pass for scanline 1 occurring in the same time period (
required to be able to do this.

Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
comparator, MCMP, is used to compare addresses generated by
the match counter. Address comparisons are utilised to determine
the next most appropriate location for the optimal path in the
match buffer.

Since the match buffer is addressed not only by a pixel location
in the scanline, but also a disparity value, these comparisons di-
rectly affect the final disparity results. The disparity is given by
MCNT and stored in the disparity buffer, DBUF, when an appropri-
ate comparison is made by MCMP. At the end of the backward-
pass, this disparity value can be retrieved by an external module,
for tracking tasks (TBUF) or direct display. The data can of course
also be retrieved by directly accessing it as it is generated by the
backward pass.

Since the backward- and forward-pass go through two distinct
pipelines, a back select multiplexer (BMUX0 and BMUX1) are used
to re-route control signals to ensure appropriate synchronisation
between the backward phase’s address, data and control logic.
3.6. Pipelined cost computation

Without PBUF or the interleaving described in Section 3.7, the
design performs at about 53 fps for 640 � 480 images with
D = 128. While this is very respectable performance, analysis
shows that the computation of the NOC (PNOC), together with
the minimum cost computation (PMIN), has a larger combinational
delay than any of the other elements of the design. This suggests
that use of PBUF will break up this delay, improving the perfor-
mance even further to 63 fps. For the cost of a small initial delay
(one clock cycle) to fill the pipeline register, throughput is substan-
tially increased. The addition of PBUF between PNOC and PMIN
(Fig. 3) allows these computations to proceed in parallel, thus
reducing the net combinational delay. As a result, additional regis-
ters are also required in CBUF. Cost computations from the previ-
ous clock cycle can be re-used by feeding them back into PBUF.
During the backward pass, to prevent read delays at the RAM
(MBUF), data must be pre-fetched from several different addresses
simultaneously.

The use of pipelining requires modification to the controlling
state machine, shown in Fig. 8. The addition of the stall state
at the end of the forward-pass ensures that the last pixel compu-
tation has time to reach the end of the forward pipeline. This is
ne at the same time as performing the forward-pass for the following scanline. This
T1–T2) as the forward pass for scanline 2. Two separate match-matrix buffers are

ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

8 W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
necessary due to the one clock cycle delay incurred when ini-
tially transferring data into the pipeline registers in PBUF. During
the backward pass, MBUF’s synchronous read operations have a
one clock cycle latency from the time that an index address is
placed on the address lines. The init state ensures that this la-
tency is taken into account for the first read operation. Since the
next read address for MBUF is determined by the currently read
data, it is necessary to pre-fetch the data for all potential next
address candidates. Without this pre-fetch, a one clock cycle pen-
alty would be incurred for every read operation executed by
MBUF. The load and backtrack states implement this pre-fetch
and compute disparity values for all pixel locations in the current
scanline.
Fig. 10. Revision of state machine in Fig. 8 that interleaves the forward-/backward-passes
pass, as well as the synchronisation between the states of the two passes. The labe
corresponding sub-states.

A1 A2

B1 B2

C1 C2

Fig. 11. Tsukuba, Venus, Teddy and Cones data sets and their ground truths. Sub-images A
and C1–C4 show ground truth disparity and occlusion maps respectively. These standard

Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
3.7. Forward-/backward-pass interleaving

A final improvement can be made to further improve perfor-
mance. The design, as described thus far, proceeds to execute the
backward pass before beginning a new forward-pass. This is limit-
ing, and is not necessary. Scanline throughput can be increased by
interleaving forward and backward phases of the DPML algorithm
execution as conceptually shown in Fig. 9 and more formally in
Fig. 10.

After the execution of the first forward-pass, the next scanline’s
forward-pass can proceed concurrent to the first backward-pass. In
order to facilitate this, the match buffer is duplicated into two
identical units MBUF0 and MBUF1 (Fig. 3). During a particular for-
. Notice the addition of controls to select which match-matrix buffer is used by each
ls MBUF1/0 and MBUF0/1 indicate mutually exclusive memory access between

A3 A4

B3 B4

C3 C4

1–A4 show the left image acquired by the stereo camera system. Sub-images B1–B4
data sets are used for evaluating accuracy of stereo correspondence results [33–35].

ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx 9

ARTICLE IN PRESS
ward-pass, one of these match buffers (MBUF) is utilised for stor-
age of cost indices while the other is utilised for the backward-pass
disparity computations of the preceding forward-pass. The match
multiplexer, MMUX, is responsible for toggling the MBUFs for
these operations.

To prevent write conflicts and ensure that all data is correctly
synchronised, a set of two back select multiplexers (BMUX0 and
BMUX1, Fig. 3) are utilised. Each of these multiplexers alone is
responsible for synchronising control signals between the two
distinct pipelines of the forward and backward pass in one partic-
ular scanline computation. However, together these multiplexers
flip flop two sets of control signals between the two match buf-
fers such that they operate in a mutually exclusive (and inter-
leaved) manner. A register, TREG, provides a stable and
synchronised toggle (address) signal for MMUX so that the results
from MBUF can be read and routed correctly to the match com-
parator, MCMP. The current match buffer, selected by MMUX, is
associated with the backward phase of execution. It does so with
a one clock delay (via TREG) relative to the BMUX0 and BMUX1
Table 1
Accuracy rankings, root mean squared error and percent bad matching pixels for four
standard data sets from Scharstein et al. [33,34]: Tsukuba, Venus, Teddy and Cones.
Note that accuracy rankings are determined by evaluation tools from [35]. Lower
values indicate better performance. Also note that four algorithms are compared: (1)
DPMLHW, Dynamic Programming Maximum Likelihood in Hardware. (2) DPML,
Dynamic Programming Maximum Likelihood in software. (3) CORR, Correlation with
11 � 11 window size. (4) SSD, Sum of Squared Difference with 11 � 11 window.
(CORR and SSD implementations from [35].)

Algorithm Avg. rank RMS error

Tsukuba Venus Teddy Cones

DPMLHW 36.8 0.74 1.13 1.07 1.12
DPML 36.8 0.74 1.13 1.07 1.12
CORR 37.0 1.36 1.07 2.39 2.17
SSD 38.0 2.45 3.77 6.95 5.31

% Bad Pixel Match

Tsukuba Venus Teddy Cones

DPMLHW 36.8 2.81 4.75 3.44 3.84
DPML 36.8 2.81 4.75 3.44 3.84
CORR 37.0 6.09 3.69 8.93 6.52
SSD 38.0 12.37 13.75 27.29 17.24

D1 D2

E1 E2

Fig. 12. Stereo correspondence results for Sum of Squared Difference (SSD) and Correla
images E1–E4 refer to the CORR algorithm.

Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
addressing signal—this allows retrieval of data from the synchro-
nous match buffer memory.
4. Results and discussion

This section provides a summary of the performance of the
example hardware implementation. Performance and accuracy of
correspondence results are presented in the context of existing
software algorithms, and also compared to other hardware imple-
mentations in the literature. Furthermore, the accuracy results are
based on standard stereo data sets and quality metrics compiled
and used, respectively, by Scharstein et al. [33–35]. All hardware
results are reported for a Xilinx XC2VP100 device—this is a moder-
ately large FPGA in the Virtex 2 family, but is by no means the larg-
est or fastest FPGA device available (currently Xilinx is producing
Virtex 6 devices with much greater capacity and speed). FPGA
development and testing was done using Xilinx’s ISE (versions
7.1, 8.1 and 9.1), ChipScope Pro (versions 8.2i and 9.1i), and Mod-
elSim SE 6.2f.

The ‘‘ground-truth” datasets used are shown in Fig. 11. For each
image set, both left and right images from a stereo pair are given,
along with a manually determined ground-truth disparity map.
Further, left- and right-occlusion maps are given so that algorithm
accuracy can be compared separately in occluded and non-oc-
cluded image regions. The images are chosen to be challenging in
a variety of ways, including regions of low texture and changes
in imaged object sizes between images. These datasets are part
of an effort to provide standard datasets for evaluating stereo dis-
parity algorithms, and are widely used by the computer vision
community.
4.1. Accuracy

Disparity results generated in the hardware implementation are
identical to the equivalent software implementation. Accuracy of
these results have been evaluated by direct comparison of the esti-
mated disparities from the hardware and software implementa-
tions, so it is no surprise that the root mean squared and bad
matching pixel metrics give identical results. It is noted that results
are superior to the Sum of Squared Difference (SSD) and Correla-
tion algorithms (based on implementations from [35]) which are
D3 D4

E3 E4

tion (CORR) algorithms. Sub-images D1–D4 refer to the SSD algorithm while sub-

ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

F1 F2 F3 F4

G1 G2 G3 G4

Fig. 13. Stereo correspondence results for the Dynamic Programming Maximum Likelihood Hardware implementation. Since both the DPML and DPMLHW results are
visually indistinguishable, only the hardware results are shown here. Sub-images F1–F4 show the disparity estimates for the Tsukuba, Venus, Teddy and Cones data sets
respectively, while sub-images G1–G4 show the occlusion estimates.

Table 2
Frame rates achieved at image resolutions of 640 � 480 and 320 � 240 pixels. Highest

10 W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
popular choices for other hardware stereo implementations. Table
1 and Figs. 11–13 provide a summary of these results.
frame rates are obtained from the pipelined and interleaved hardware, DPMLHW(I).
The frame rates shown were calculated using formulae based on worst-case timing
analysis, i.e. Eq. (3). Results for all DPMLHW designs, for 640 � 480 images, were
verified an a Virtex 2 FPGA using the disparity ranges shown, with the exception of
DPMLHW(I) with D = 128: this result is based on hardware simulation results with
respect to a Virtex 5 device, as we did not have a Virtex 5 device to test with. Results
for 320 � 240 images are not verified in hardware, but are included to provide direct
comparison with authors who have used this image resolution.

Algorithm Dmax Fmax_clk Resolution FPS

DPMLHW(I) 128 80 MHz 640 � 480 123.85
64 80 MHz 640 � 480 131.14
16 100 MHz 640 � 480 161.54

128 80 MHz 320 � 240 472.37
64 80 MHz 320 � 240 494.80
16 100 MHz 320 � 240 513.08

DPMLHW(P) 128 80 MHz 640 � 480 63.54
16 100 MHz 640 � 480 81.16

128 80 MHz 320 � 240 248.20
16 100 MHz 320 � 240 323.75

DPMLHW(PP) 128 67 MHz 640 � 480 53.22
16 67 MHz 640 � 480 54.37

128 67 MHz 320 � 240 207.86
16 67 MHz 320 � 240 216.91

DPMLHW(S) 128 47 MHz 640 � 480 1.15
16 47 MHz 640 � 480 7.28

128 47 MHz 320 � 240 4.60
16 47 MHz 320 � 240 29.14

DPML 128 2.6 GHz 640 � 480 0.18
16 2.6 GHz 640 � 480 0.24

128 2.6 GHz 320 � 240 1.24
16 2.6 GHz 320 � 240 2.01
4.2. Performance and timing

In this section the performance of a number of progressively bet-
ter DPML implementations are compared. The label DPML refers to
a C language software implementation of the dynamic program-
ming stereo algorithm running on a 2.6 GHz Linux workstation.
DPMLHW(S), DPMLHW(PP), DPMLHW(P) and DPMLHW(I) refer to
FPGA hardware implementations. DPMLHW(S) is our first, largely
sequential (row-wise processing), implementation, reported in
[31]. DPMLHW(PP) is a partially pipelined hardware implementa-
tion that utilises the anti-diagonal structure of the cost and match
matrix for improved performance and increased parallelisation.
DPMLHW(P) is a fully pipelined hardware implementation that
adds an extra pipeline buffer (PBUF) to split the large asynchronous
cost computation into two distinct sections. This allows an increase
in the clock frequency. Finally, DPMLHW(I) is a refinement of
DPMLHW(P) in which the forward- and backward-passes of the
algorithm are interleaved, and represents the final state of our de-
sign. Fig. 3 shows the DPMLHW(I) design’s architecture.

Eq. (3) is the result of a worst-case timing analysis of the
DPMLHW(I) hardware implementation, and gives the expected
frame rate for an n �m image, maximum disparity D and FPGA
clock rate Fclk:

FPSIðn;m;D; FclkÞ ¼
2nþ ð2nþ D=2� 1Þm

Fclk

� ��1

where n and m indicates the width and height of the input image, D
indicates the maximum disparity and Fmax_clk the maximum allow-
able clock frequency of the circuit. In practice higher frame rates are
typically seen, but this represents a lower bound on the processing
frame rate. Similar timing equations have been developed for the
other designs, but are not included here to avoid confusion.

A summary of runtime performance is shown in Table 2 for
D = 16 and D = 128 (and D = 64 for the final implementation).
The results are summarised graphically in Fig. 14. At a frame rate
of 63.54 fps and pixel resolution of 640 � 480, the DPMLHW(P)
FPGA implementation vastly out-performs equivalent software
algorithms while maintaining comparably accurate results. This
Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
is a significant improvement over DPMLHW(S), which did not
take advantage of the cost matrix structure. However, the best re-
sults are seen with the DPMLHW(I) implementation, running at
123.85 fps. A hardware implementation on the Xilinx Virtex 2 de-
vice (D = 64) achieved 131.14 fps. Due to BRAM limitations on the
Xilinx Virtex 2 device, it was not possible to actually run the
D = 128 DPMLHW(I) design in hardware. However, after perform-
ing post synthesis simulations targeted for the Xilinx Virtex 5
device it was noted that, in-fact, a frame rate of 123.85 fps can
ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

DPMLHW(I)
DPMLHW(P)

DPMLHW(PP)
DPMLHW(S)

(640 x 480) 16

(640 x 480) 64

(640 x 480) 128

(320 x 240) 16

(320 x 240) 64

(320 x 240) 128

0

20

40

60

80

100

(Resolution) Maximum Disparity [pixels]

S
ys

te
m

 C
lo

ck
 [M

H
z]

DPMLHW(I)
DPMLHW(P)

DPMLHW(PP)
DPMLHW(S)

DPML
(640 x 480) 16

(640 x 480) 64
(640 x 480) 128

(320 x 240) 16
(320 x 240) 64

(320 x 240) 128

0

100

200

300

400

500

600

(Resolution) Maximum Disparity [pixels]

F
ra

m
e

R
at

e
[M

H
z]

(b)(a)
Fig. 14. The data of Table 2 in graphical format.

Table 4
Resource usage summary (pipelined + interleaved).

Pixels of
disparity

Slices 4-input
LUTs

BRAMs MULT18 � 18s

16 2209 (5%) 3249 (3%) 72 (16%) 9 (2%)
32 3857 (8%) 6313 (7%) 136

(30%)
17 (3%)

64 7000 (15%) 10,576 264 33 (7%)

Table 3
A comparison of frame rates and depth pixels per second of various existing hardware implementations used to compute stereo correspondence. The prefix in front of the
algorithm name represents the underlying technique: SAD for Sum of Squared Difference, CENSUS for census transform, PHASE for phase correlation and DPML for dynamic
programming. The suffix indicates the authors associated with the implementation: MIYA – Miyajima et al. [16]; PERR – Perri et al. [18]; JACO: Jacobi et al. [36]; LEE – Lee et al.
[22]; JIA – Jia et al. [37]; SIMH – Simhadri et al. [21] ; WOOD - Woodfill et al. [26]; MURPHY – Murphy et al. [27]; MITE – Mitéran et al. [19]; DIAZ – Diaz et al. [23]; MASR –
Masrani et al. [25]; DARA – Darabiha et al. [24].

Algorithm Dmax Resolution Fmax_clk FPS DPS DPSN

DPMLHW(I) 128 640 � 480 80 MHz 123.85 4.870 � 109 60.87
DPMLHW(I) 64 640 � 480 80 MHz 132.87 2.612 � 109 32.65
DPMLHW(P) 128 640 � 480 80 MHz 63.54 2.477 � 109 30.96
SAD_MIYA 200 640 � 480 40 MHz 18.90 1.161 � 109 29.03
SAD_PERR 256 512 � 512 286 MHz 25.60 1.717 � 109 6.01
SAD_JACO 178 178 � 146 158 MHz – 1.400 � 109 8.86
SAD_LEE 64 320 � 240 – 122.00 0.600 � 109 –
SAD_JIA 64 640 � 480 60 MHz 30.00 0.590 � 109 9.83
SAD_SIMH 64 512 � 512 100 MHz 0.34 0.006 � 109 0.06
CENSUS_WOOD 52 512 � 480 – 200.00 2.556 � 109 –
CENSUS_MURPHY 20 320 � 240 – 150.00 0.230 � 109 –
PHASE_MITE 20 256 � 256 200 MHz 25.00 0.032 � 109 0.16
PHASE_DIAZ 4 640 � 480 65 MHz 211.00 0.259 � 109 3.98
PHASE_MASR 128 640 � 480 – 30.00 1.180 � 109 –
PHASE_DARA 20 256 � 360 – 33.00 0.061 � 109 –

W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx 11

ARTICLE IN PRESS
be achieved, as predicted by Eq. (3), at a maximum disparity
range of D = 128. Given the quality of the DPML results, we be-
lieve this represents the current state-of-the-art for hardware ste-
reo disparity computation.

It is worth noting that it is possible to make further optimisa-
tions to DPMLHW(P) that do not involve interleaving the forward-
and backward-passes, and these improvements result in theoreti-
cal performance3 of roughly 100 fps for D = 128 on 640 � 480
images using a Virtex 5, although this design has not been tested
on actual Virtex 5 hardware [28]. It runs at a clock speed of
125 MHz. The improvements rely in part on using the advanced
features of the Virtex 5 family, such as digital signal processing
(DSP) blocks. However, the greater improvements available via
the DPMLHW(I) design have made this result obsolete.
3 Based on hardware simulation.

Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
Table 3 compares performance of our system with other hard-
ware stereo systems in the literature. DPMLHW(I) shows the high-
est DPS (Disparity-Pixels/Second) measure, and with two
implementations running in parallel it is capable of the highest
(11%) (59%)
128 14,488

(32%)
23,027
(26%)

520
(117%)

65 (14%)

ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://dx.doi.org/10.1016/j.cviu.2010.03.011

12 W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx

ARTICLE IN PRESS
frame rate as well. Of the systems with frames rates at or above
150 fps, only Woodfill et al. has a DPS measure approaching that
of DPMLHW(I). DPSN is DPS normalised by the system’s clock rate,
Fmax_clk. It should be noted that timing performance of DPMLHW(I)
can be further improved by duplicating the existing hardware
module to process two or more scanlines simultaneously, at the
expense of additional FPGA resources. For example, 640 � 480
images can be processed at well over 200 fps by instantiating
two DPMLHW(I) cores in a suitable-sized FPGA device, and allow-
ing them to process pairs of scanlines in parallel. In addition to the
improved performance, note that our implementation is the only
algorithm that attempts a globally (per-scanline) optimal solution
for disparity.

4.3. FPGA resource usage

Despite the intensive nature of the dynamic programming prob-
lem, the DPMLHW(I) FPGA resource utilisation remains fairly low.
On a Xilinx XC2VP100 device, at D = 16 this utilisation stands at:
2209 slices, or 5% of the FPGA resources. At D = 128, utilisation in-
creases to 14,488 slices, or 32% of the resources. Note that the de-
sign also utilises special purpose DSP blocks for the RAM and
multipliers. For D = 16 the utilisation of these blocks stands at:
16% and 2%, of total FPGA resources, respectively. At D = 128 this
utilisation increases to: 117% and 14% respectively (we have run
simulations of the D = 128 design as it exceeds available memory
resources, but it will fit easily onto newer (existing) Xilinx FPGAs).
Table 4 gives a complete resource usage summary.

5. Conclusions

This paper describes useful structure in the cost matrix of a
large class of dynamic programming problems, namely that if
any anti-diagonal in the cost matrix depends only on the preceding
ones, then it is possible to compute cost matrix entries in parallel,
in the time it takes the data to arrive. This allows for an efficient,
pipelined architecture to be used in hardware implementations.
An example design that implements stereo disparity estimation
using dynamic programming is described. The interleaved and
pipelined implementation runs at up to 131.14 fps for 640 � 480
images using a disparity range of D = 64 pixels, and in simulations
runs at 123.85 fps for D = 128. For smaller images it is possible to
perform disparity computations at frames rates well in excess of
200 fps. On a larger device, the processing rate can be doubled by
instantiating two copies of the design in parallel with each other.
The system has an accuracy essentially identical to the reference
software implementation, and it fits on a moderately large FPGA
device.

Acknowledgments

The authors would like to thank Ontario Centres of Excellence
and MDA Space Missions for financial support, and MicroNet for
providing the development platform. The authors would also like
to thank Michael Greenspan (Queen’s University), Lev Kirischian
(Ryerson University) and Piotr Jasiobedzki (MDA Space Missions)
for helpful discussions and suggestions related to this work.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
MIT Press/McGraw-Hill, 2001.

[2] M. Borah, R. Bajwa, S. Hannenhalli, M. Irwin, A SIMD solution to the sequence
comparison problem on the MGAP, in: Proceedings., International Conference
on Application Specific Array Processors, 1994, pp. 336–345.

[3] D. Hoang, Searching genetic databases on splash 2, in: Proceedings. IEEE
Workshop on FPGAs for Custom Computing Machines, 1993, pp. 185–191.
Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
[4] W.S. Martins, J.B.D. Cuvillo, F.J. Useche, K.B. Theobald, G. Gao, A multithreaded
parallel implementation of a dynamic programming algorithm for sequence
comparison, in: In Pacific Symposium on Biocomputing 2001, 2001, pp. 311–
322. <http://helix-web.stanford.edu/psb01/martins.pdf>.

[5] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, K. Tan, Generating
parallel programs from the wavefront design pattern, in: IPDPS ’02:
Proceedings of the 16th International Parallel and Distributed Processing
Symposium, IEEE Computer Society, Washington, DC, USA, 2002, p. 165.

[6] Ayala-Rincón, R. Jacobi, L. Carvalho, C. Llanos, R. Hartenstein, Modeling and
prototyping dynamically reconfigurable systems for efficient computation of
dynamic programming methods by rewriting-logic, in: Proceedings of the 17th
Symposium on Integrated Circuits and System Design, SBCCI ’04, ACM, New
York, NY, 2004, pp. 248–253.

[7] T.F. Smith, M.S. Waterman, Identification of common molecular subsequences,
Journal of Molecular Biology 147 (1981) 195–197.

[8] M. Gong, R. Yang, L. Wang, M. Gong, A performance study on different cost
aggregation approaches used in real-time stereo matching, International
Journal of Computer Vision (IJCV) 75 (2) (2007) 283–296.

[9] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, A Comparison and
evaluation of multi-view stereo reconstruction algorithms, in: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1,
2006, pp. 519–526.

[10] B. Zitova, J. Flusser, Image registration methods: a survey, Image and Vision
Computing 21 (2003) 977–1000.

[11] I.J. Cox, S.L. Hingorani, S.B. Rao, B.M. Maggs, A maximum likelihood stereo
algorithm, Computer Vision and Image Understanding 63 (3) (1996) 542–567.

[12] D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms, International Journal of Computer Vision
(IJCV) 47 (1–3) (2002) 7–42.

[13] M.Z. Brown, D. Burschka, G.D. Hager, Advances in computational stereo, IEEE
Transactions on Pattern Analysis and Machine Intelligence 5 (8) (2003) 993–
1008.

[14] M. Tappen, W. Freeman, Comparison of graph cuts with belief propagation for
stereo, using identical MRF parameters, in: IEEE International Conference on
Computer Vision (ICCV), vol. 2, 2003, pp. 900–906.

[15] Y. Lu, J.Z. Zhang, Q.M.J. Wu, Z.-N. Li, A survey of motion-parallax-based 3-D
reconstruction algorithms, IEEE Transactions on Systems, Man, and
Cybernetics – Part C: Applications and Reviews 34 (4) (2004) 532–548.

[16] Y. Miyajima, T. Maruyama, A real-time stereo vision system with FPGA, in:
International Conference on Field Programmable Logic and Applications (FPL),
2003, pp. 448–457.

[17] M. Hariyama, Y. Kobayashi, H. Sasaki, M. Kameyama, FPGA implementation of
a stereo matching processor based on window-parallel-and-pixel-parallel
architecture, in: Midwest Symposium on Circuits and Systems (MWSCAS), vol.
2, 2005, pp. 1219–1222.

[18] S. Perri, D. Colonna, P. Zicari, P. Corsonello, SAD-based stereo matching circuit
for FPGAs, in: International Conference on Electronics, Circuits and Systems
(ICECS), 2006, pp. 846–849.

[19] J. Miteran, J.-P. Zimmer, M. Paindavoine, J. Dubois, Real-time 3D face
acquisition using reconfigurable hybrid architecture, EURASIP Journal on
Image and Video Processing 2007 (1) (2007) 5.

[20] D. Han, D.-H. Hwang, A novel stereo matching method for wide disparity range
detection, in: International Conference on Image Analysis and Recognition
(ICIAR), 2005, pp. 643–650.

[21] V. Simhadri, P. Chandramani, Y. Ozturk, RASCor: Realtime Associative Stereo
Correspondence, in: International Conference on Image Processing (ICIP),
2007.

[22] S. Lee, J. Yi, J. Kim, Real-time stereo vision on a reconfigurable system, Lecture
Notes in Computer Science: Embedded Computer Systems: Architectures,
Modeling, and Simulation 3553 (2005) 299–307.

[23] J. Diaz, E. Ros, S.P. Sabatini, F. Solari, S. Mota, A phase-based stereo vision
system-on-a-chip, Biosystems 87 (2–3) (2006) 314–321.

[24] A. Darabiha, W.J. MacLean, J. Rose, Reconfigurable hardware implementation
of a phase-correlation stereo algorithm, Machine Vision and Applications 17
(2) (2006) 116–132.

[25] D.K. Masrani, W.J. MacLean, A real-time large disparity range stereo-system
using FPGAs, in: International Conference on Computer Vision Systems (ICVS),
2006.

[26] J.I. Woodfill, G. Gordon, R. Buck, Tyzx deepsea high speed stereo vision system,
in: Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), vol. 3, 2004, pp. 41–46.

[27] C. Murphy, D. Lindquist, A. Rynning, T. Cecil, S. Leavitt, M. Chang, Low-cost
stereo vision on an FPGA, in: Field-Programmable Custom Computing
Machines, 2007, FCCM 2007, 15th Annual IEEE Symposium on, 2007, pp.
333–334.

[28] S. Sabihuddin, Dense stereo reconstruction in a field programmable gate array,
Master’s thesis, University of Toronto, 2008.

[29] J. Islam, Architecture and implementation of a high frame-rate stereo vision
system, Master’s thesis, Ryerson University, 2008.

[30] S. Sabihuddin, J. Islam, W.J. MacLean, Dynamic programming approach to high
frame-rate stereo correspondence: a pipelined architecture implemented on a
field programmable gate array, in: Canadian Conference on Electrical &
Computer Engineering (CCECE), 2008, pp. 1461–1466.

[31] S. Sabihuddin, W.J. MacLean, FPGA implementation of dynamic programming
stereo vision for high frame-rate tracking system, in: International Conference
on Computer Vision Systems, Bielefeld, Germany, 2007.
ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://helix-web.stanford.edu/psb01/martins.pdf
http://dx.doi.org/10.1016/j.cviu.2010.03.011

W.J. MacLean et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx 13

ARTICLE IN PRESS
[32] D. Buell, T. El-Ghazawi, K. Gaj, V. Kindratenko, High-performance
reconfigurable computing, IEEE Computer 40 (3) (2007) 23–27.

[33] D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms, International Journal of Computer Vision
47 (1/2/3) (2002) 7–42.

[34] D. Scharstein, R. Szeliski, High accuracy stereo depth maps using structured
light, in: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, 2003, pp. 195–202.
Please cite this article in press as: W.J. MacLean et al., Leveraging cost matrix str
dynamic programming, Comput. Vis. Image Understand. (2010), doi:10.1016/j
[35] D. Scharstein, R. Szeliski, 2007. <http://vision.middlebury.edu/stereo/>.
[36] R.P. Jacobi, R.B. Cardoso, G.A. Borges, Voc: a reconfigurable matrix for stereo

vision processing, in: International Parallel and Distributed Processing
Symposium (IPDPS), 2006.

[37] Y. Jia, X. Zhang, M. Li, L. An, A miniature stereo vision machine (MSVM-III) for
dense disparity mapping, in: International Conference on Pattern Recognition
(ICPR), 2004.
ucture for hardware implementation of stereo disparity computation using
.cviu.2010.03.011

http://vision.middlebury.edu/stereo/
http://dx.doi.org/10.1016/j.cviu.2010.03.011

	Leveraging cost matrix structure for hardware implementation of stereo disparity computation using dynamic programming
	Introduction
	Cost matrix structure
	Example hardware implementation
	Buffering incoming pixels
	Computing cost matrix elements
	Boundary conditions
	Match matrix and backtracking
	State machine implementation
	Forward pass
	Backward pass

	Pipelined cost computation
	Forward-/backward-pass interleaving

	Results and discussion
	Accuracy
	Performance and timing
	FPGA resource usage

	Conclusions
	Acknowledgments
	References

