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This paper presents the Mojave Desert field test results of planetary rover visual motion estimation (VME)
developed under the “Autonomous, Intelligent, and Robust Guidance, Navigation, and Control for Planetary
Rovers (AIR-GNC)” project. Three VME schemes are compared in realistic conditions. The main innovations
of this project include the use of different features from stereo-pair images as visual landmarks and the use of
vision-based feedback to close the path-tracking loop. The multiweek field campaign, conducted on relevant
Mars analogue terrains, under dramatically changing lighting and weather conditions, shows good localization
accuracy on the average. Moreover, the MDA-developed inertial measurement unit (IMU)-corrected odometry
was reliable and had good accuracy at all test locations, including loose sand dunes. These results are based
on data collected during 7.3 km of traverse, including both fully autonomous and joystick-driven runs. © 2012

Wiley Periodicals, Inc.

1. INTRODUCTION

One of the continuing challenges for future unmanned
exploration rover missions on the Moon and Mars is the
ability to accurately estimate the rover’s position and ori-
entation. In the absence of an equivalent to the Global Posi-
tioning System on Earth, designers of future systems must
exploit a combination of vehicle odometry, inertial sens-
ing, and visual information to obtain this localization in-
formation. Future missions such as ESA’s ExoMars and
NASA’s Mars Science Laboratory rover require the rover
to autonomously traverse from hundreds of meters to one
kilometer daily at speeds of up to 100 m/h (Volpe, 2006).
Equally challenging is the need to localize the position
of the rover to an accuracy of between 1% and 4% of
the distance traveled. Accurate localization is arguably the
most fundamental competence required for long-range au-
tonomous navigation. For this reason, MDA Space Mis-
sions and the Canadian Space Agency (CSA) have em-
barked on a development path to further their capability
for visual motion estimation (VME) of planetary rovers.
VME algorithms have recently seen considerable inter-
est from the planetary exploration rover community as a
solution for accurate localization. On the Mars Exploration
rovers (MERs), visual odometry was not considered part of
the main system for localization, but was shown to perform
relatively well. In Maimone, Chang, and Matthies (2007),
JPL reported that “Visual Odometry software has enabled

precision drives over distances as long as 8 m on slopes
greater than 20 degrees, and has made it possible to safely
traverse the loose sandy plains of Meridiani.” The algo-
rithm works by tracking Harris corner features (Harris &
Stephens, 1988) in a stereo image pair from one frame to the
next. Thus, the problem is one of determining “the change
in position and attitude for two pairs of stereo images by
propagating uncertainty in a 3D to 3D pose estimation for-
mulation using maximum likelihood estimation.” The eval-
uation tests conducted at the JPL Marsyard and Johnson
Valley, California showed that the absolute position errors
were less than 2.5% over the 24-m Marsyard course, and
less than 1.5% over the 29-m Johnson Valley course. The ro-
tation error was less than 5.0 deg in each case.

LAAS/CNRS (Laboratoire d’Architecture et d”Analyse
des Systemes/Centre National de la Recherche Scien-
tifique) VME is based on the frame-to-frame pixel-tracking
method. Landmarks are extracted from images by finding
points of interest identified by image intensity gradients.
The test results using the Lama rover (Lacroix et al., 2000)
showed an error of 4% on a 25 m traverse. After improve-
ment of the algorithm in Lacroix et al. (2002), an overall er-
ror of 2% on a 70 m traverse was achieved.

A survey of the literature (Biesiadecki et al., 2005;
Corke et al., 2004, Maimone et al., 2007) shows that the
state of the art in localization has yet to meet the ExoMars
localization accuracy requirement of 1% of the trav-
eled distance, without the use of computationally intense

Journal of Field Robotics, 1-13  © 2012 Wiley Periodicals, Inc.

View this article online at wileyonlinelibrary.com e DOI: 10.1002/rob.21409



P1: SFO
Journal of Field Robotics

JWUS1277A/ROB-11-0016.R2

2 . Journal of Field Robotics—2012

methods (for example, bundle adjustment') that either ne-
cessitate much higher power flight avionics or execution as
a postprocessing step. The most promising results to date
are published in Konolige, Agrawal, and Sola (2007) and
Souvannavong, Lemaréchal, Rastel, and Maurette (2010);
both of the approaches use sparse bundle adjustment but
are tested using a limited number of outdoor data sets.
Sibley, Mei, Reid, and Newman (2010) derived a relative
bundle adjustment that, instead of optimizing in a single
Euclidean space, works in a metric space defined by a man-
ifold. The results on over 850,000 images (covering 142 km)
indicate the accuracy and scalability of the approach. Pre-
vious work at MDA has shown that a full simultaneous lo-
calization and mapping (SLAM) approach yields good ac-
curacy, but has a high computational burden, restricting
the vehicle to lower speeds (Bakambu et al., 2008). Con-
versely, if no map is maintained, a frame-to-frame pixel-
tracking technique has been shown to operate with accept-
able speed, but at the cost of decreased accuracy. MDA
proposed a multiframe VME algorithm that attempts to ob-
tain a suitable balance between accuracy and speed. The re-
sults in hardware indicate that traverses of greater than 200
m are possible to an accuracy of between 1% and 4% under
planetary conditions. Our approach uses 3D odometry and
a stereo pair to identify visual landmarks using the scale
invariant feature transform (SIFT) (Lowe, 1999). Although
the result is commensurate with the ExoMars localization
accuracy requirements, further development is needed to
improve accuracy and achieve robustness under a variety
of terrain conditions, and decreased computational cost for
greater practicality for a flight mission.

The latest MDA VME approach is presented in this pa-
per. This extended localization system was tested in a three-
week field campaign in the Mojave Desert using the robot
shown in Figure 1. The new features being tested, which
yield improvements from the previous work (Bakambu
et al., 2008), include the following;:

® Use of different features from stereo-pair images as vi-
sual landmarks. SIFT features are invariant to image
translation, scaling, and rotation and partially invariant
to illumination changes and affine projection, making
them suitable landmarks for use in motion estimation
(Se, Barfoot, & Jasiobedzki, 2005). However, in testing of
the VME system to date it has been found that in some
cases SIFT features alone are insufficient for tracking.
For example, on sandy terrain with smooth rocks, the
SIFT detector often produces only small-scale features,
which are often unstable. Other features extracted from
the stereo-pair images in the current work are maximally

'Triggs, McLauchlan, Hartley, and Fitzgibbon (2000): “Bundle ad-
justment is the problem of refining a visual reconstruction to pro-
duce jointly optimal 3D structure and viewing parameter (camera
pose and/or calibration) estimates.”
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Figure 1. Rover test bed in the Mojave Desert.
stable extremal regions (MSERs) (Donoser & Bischof,
2006; Kristensen & MacLean, 2007; Matas, Chum, Urban,
& Pajdla, 2002) and Harris-Laplace (Mikolajczyk et al.,
2005) features.

® Extension of the localization system to use inclinome-
try to improve roll/pitch angle estimation. Inclinometry
maintains an observable estimate of the gravity vector,
instead of relying on roll and pitch rate integration.

® Extension of the localization system to use a long-range
and wide-field-of-view active 3D sensor to extract long-
range fixed landmarks for enforcing VME observability,
and thus improving the accuracy of the approach.

® Use of the improved VME pose estimate as feedback
for closed-loop motion control. Our novel approach uses
frequency lifting (Davis & Vinter, 1985) to allow VME to
be used while the rover is moving, rather than as an a
posteriori estimate once the traverse is completed.

The VME technologies described above were inte-
grated as part of a complete long-range GN&C solution
for planetary rovers, including 3D terrain modeling and as-
sessment, motion planning and tracking, hazard detection
and avoidance algorithms, and high-level supervisory con-
trol based on CORTEX, a tool developed by the Canadian
Space Agency (CSA) for design and real-time execution of
state machines (Dupuis et al., 2005).

The rest of this paper is organized as follows. Section 2
details a typical field test scenario and describes the test en-
vironments through pictures and maps reconstructed from
sensor data. The challenges and the issues observed during
the field test campaign are also presented. The experimen-
tal results and lessons learned are presented and discussed
in Section 3. Section 4 concludes the paper.

2. SYSTEM OVERVIEW
2.1. Operational Scenario

To better understand the sequence of operations dur-
ing the test campaign, this subsection describes a typical

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Typical field test scenario, showing 3D terrain data
from the sensor, color-coded according to traversability. Dots
indicate the planned path.

long-range exploration scenario for a planetary rover. This
scenario can be classified as autonomous navigation in an
unknown terrain

A typical autonomous traverse (see Figure 2) consists
of the following operations:

® A remotely located operator or scientist selects one or
more goal locations that are outside of the rover’s on-
board sensor ranging envelope and/or obscured by an
obstacle when viewed from the start location.

® The rover takes a high-resolution, medium-range (10 to
15 m) scan of its surrounding environment using its in-
tegrated sensor suite.

® The rover constructs an internal representation of the
surrounding terrain, conducts the terrain traversability
assessment, and plans a hazard-free path toward the
goal. This path is safe inside the sensed area, and aims
directly at the goal outside the sensed area.

® The operator station displays the terrain map, including
traversability map overlays, and the planned path.

® The rover tracks the planned path up to the boundary of
the medium-range map and stops. Telemetry and envi-
ronment data are collected during the motion and at the
stop location.

® Mapping, terrain assessment, and path planning are
automatically repeated until the final destination is
reached. If the goal is not reachable, the rover will move
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as close as possible to the defined goal (as illustrated in
Section 0, Figure 19) and request a new goal or a new
task.

All of the above steps are coordinated and monitored
by a high-level supervisory control and data acquisition
module developed using the CSA’s CORTEX autonomy
framework (Dupuis et al., 2005), described in the next
subsection.

2.2. High-Level Supervisory Control

Exploration of large unknown planetary environments will
rely on rovers that can autonomously cover distances of
kilometers and maintain precise information about their lo-
cation with respect to local terrain features. This requires
the capability of perceiving, modeling, and assessing the
environment, planning and tracking collision-free paths,
and detecting and avoiding hazards autonomously. Obvi-
ously, planetary exploration robots will require a high level
of autonomy to perform tasks more efficiently.

Over the last few years, the Canadian Space Agency
(CSA) has designed, implemented, and tested different au-
tonomy techniques on typical autonomous robotics sce-
narios: finite state machines (FSM), hierarchical task net-
works (HTN), and goal decomposition hierarchies (GDH).
Details on enumerated autonomy techniques are provided
in (Dupuis et al., 2005). Based on the experience gained on
testing these autonomy techniques, CSA designed and im-
plemented the CORTEX Autonomy Toolbox, which merges
the advantages of these techniques. CORTEX implements
hierarchical FSM (HFSM), which allows a high-level FSM
to invoke a lower-level FSM.

To take full advantage of the CORTEX autonomy tool-
box, HFESM formalism is used for the AIR-GNC system.
Note, however, that to actually design the state machines,
a formal method is required that guarantees that the sys-
tem behavior obeys a desired specification and that all de-
sired behaviors are executed in a nonblocking and noncon-
flicting fashion (Ramadge & Wonham, 1987). The method-
ology employed mimics the theory of state space methods
in control theory. It is known in the literature as the theory
of discrete event systems, originally developed by W. M.
Wonham in 1987 (Ramadge & Wonham, 1989).

2.3. Terrain Modeling, Traversability Assessment,
and Path Planning

Two different path planning algorithms were developed,
implemented, and tested in this project. The MDA-
developed path planner, which is based on a grid cost map
computed from a terrain traversability assessment and D*
search (Stentz, 1995), is used for short-range path planning
(see Figure 2). The CSA-developed hybrid path planner,
which uses a triangulated mesh, is used to plan medium-
range paths. The hybrid path (see Figure 3) is obtained
by first computing an A* path using a triangulated mesh,
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Figure 3. Triangulated mesh (cyan) with extracted traversable corridor (green) along the planned A* path (white dots) and hybrid

path (red dots).

extracting a traversable corridor along the A* path, and
then applying a fluid theory-based path planner to find
a smooth and short path within the traversable corridor.
More details on CSA’s hybrid path planning can be found
in (Gingras et al., 2010). The terrain modeling function is
based on (Gingras et al., 2010).

2.4. Localization

The rover test bed is equipped with wheel odometry, an
AIMS FOG 2 navigation-grade inertial measurement unit
(IMU), and a Point Grey XB3 commercial stereo camera.
The autonomous traverse can be executed using localiza-
tion estimates from either the enhanced IMU-corrected
odometry or the VME, as described in Section 1, and in
(Bakambu et al., 2008). It is worth noting that prior work
in this field has focused on VME as an open-loop observer
for providing accurate localization a posteriori when a des-
tination is reached. In our novel approach, the low-rate
and delayed VME measurements and the high-rate IMU-
odometry measurements are fused to yield a high-rate and
smooth position and attitude measurement signal. This
technique is called frequency lifting (Davis and Vinter, 1985).
The frequency-lifting output is then used as the feedback
signal for closed-loop path tracking.

3. FIELD TRIAL CAMPAIGN

The goal of the AIR-GNC project was to advance the ca-
pabilities of autonomous navigation (terrain modeling and
assessment, path planning, path tracking, and localization)

for future planetary missions. To demonstrate these capa-
bilities, it was necessary to test them in a relevant planetary
environment, which includes rocks, cracks, loose sand, and
slope hazards. The dry lake beds of the Mojave Desert in
the Southern United States have been used as Mars ana-
logues in the past by NASA’s Jet Propulsion Laboratory
(Huntsberger et al., 2002). The terrain offers a variety of soil
conditions, from dry, fine-grained sand to hard-packed clay
to loose gravel. Slopes and rock fields can also be found
near the edges of the lake beds. The area is also relatively
free of vegetation. The test bed with the newly developed
software modules was fully exercised because of the pres-
ence of slope and rock hazards, the likelihood of wheel slip-
page, and the presence of representative natural image fea-
tures. The main focus of this paper is on presenting the
performance of the various VME schemes under realistic
conditions.

The advantage of conducting a multiweek test cam-
paign is the large body of data that can be stored and an-
alyzed. This allows a more meaningful statistical analysis
to be conducted, and hence, a truer representation of the
localization performance accuracy across a wide variety of
terrains. During this field campaign, 104 separate runs were
logged, spanning 7.3 km of traverse in six distinct terrain
classes. In the literature, very few research groups have
conducted multiweek test campaigns in representative en-
vironments. Wettergreen et al. (2005) and Wettergreen et al.
(2008) deployed the rover “Zoe” in the Marslike Atacama
Desert of Chile. During three seasons of field testing cam-
paigns, this robot has traveled over 250 km autonomously.
Furgale and Barfoot (2010) deployed a six-wheeled rover

Journal of Field Robotics DOI 10.1002 /rob
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Figure 4. Map showing the Desert Studies Center, Baker, and
the relative locations of the test sites. Source: Google.

platform in planetary analogue terrain on Devon Island
in the Canadian Arctic. This rover has traveled more than
32 km, 99.6% of the distance without human intervention.

3.1. Field Test Terrain Landscapes and
Reconstructed Maps

The home base for the field trials was the Desert Studies
Center (DSC), located near Baker, California. The DSC is
a field station of the Biology Department of the California
State University at Fullerton, and hosts desert biology and
geology researchers and students from academia and in-
dustry. Considering its isolated location, the DSC is an ex-
cellent facility for use as a home base for field trials.

The field tests were conducted in and around Silver
Dry Lake, Silurian Dry Lake, and Dumont Little Dunes in
the Mojave Desert (see Figure 4). The test environs offer
many interesting terrains (in terms of soil characteristics, vi-
sual features, and rock, bush, and slope hazards), all within
a small geographical area.

3.1.1.

Three locations were selected for testing in the Silver Dry
Lake bed: the Playa, Boulder, and Plateau locations. The
Playa location is characterized by relatively flat, open,
and hazard-free terrain. The soil is hard clay, which has
cracked as it dries. This produces a fractal-like pattern of
fissures on the surface. The fissures also make the surface
bumpy, which can cause the rover to shake as it moves (see
Figure 5).

Silver Dry Lake Test Locations

Journal of Field Robotics DOI 10.1002/rob
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Figure5. Typical view of the Playa location at Silver Dry Lake.

Figure 6.
Lake.

Typical view of the Boulder location at Silver Dry

The Boulder field is characterized by relatively flat
loose sand and playa, with large rock hazards randomly
scattered throughout (see Figure 6). The hazard detection
function of the terrain assessment system was fully exer-
cised in this location.

The Plateau area is characterized by loose, small-
grained gravel with few rocks, but many medium-sized
bushes (see Figure 7 and Figure 8). This proved to be a visu-
ally challenging location, because there were few rock fea-
tures of significant size in the image, and the wind-induced
motion of the bushes caused their appearance to change
rapidly, which affects the pixel-tracking motion estimate.

3.1.2. Silurian Dry Lake Test Locations

Two locations were selected for testing in the Silurian Dry
Lake bed: the Playa and the Shore. The open playa of Sil-
urian Lake is virtually the same as the playa of Silver Lake,
with the exception that the fissures in the clay are slightly
larger. The Shore location is simply the shore of the Silurian
Dry Lake bed, where the playa turns into loose gravel with
some bushes (see Figure 9). The advantage of this test area
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Figure 7. Typical view of the Plateau location at Silver Dry
Lake.

Figure 8. Reconstructed map of the Plateau and the traveled
path (200 x 255 m, 960 m traveled distance).

was the ability to test the transition from playa to loose
gravel and back.

3.1.3. Other Test Locations

The Mudflat area was found near Route 127, between Sil-
urian Dry Lake and Dumont Little Dunes. It contains a lot
of loose sand and gravel, with many ravines and gullies.
There are only a few bushes. Most of the hazards are due to
slope rather than rocks (see Figure 10 and Figure 11).

Dumont Little Dunes provided a test location with
loose sand dunes, with occasional sparse bushes, as shown
in Figure 12 and Figure 13. This terrain provided a great
deal of wheel slippage. Visual features were mostly due to
vehicle tracks rather than natural terrain.

January 4, 2012
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Figure 9.
Lake.

Typical view of the Shore location at Silurian Dry

Figure 10. Typical view of the Mudflat location near Route
127, between Silurian Dry Lake and Dumont Little Dunes.

Figure 11. Reconstructed Mudflat map and traveled path
overlays (160 x 140 m, 445 m traveled distance).

3.2. The Challenges and Issues Observed

This subsection addresses some of the general issues ob-
served that affected the field campaign. The performance
of the localization system itself will be addressed in
Section 4.

Journal of Field Robotics DOI 10.1002/rob
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Figure 12. Typical view of the Dumont Little Dunes location.

Figure 13. Reconstructed Dunes map and traveled path over-
lays (250 x 340 m, 360 m traveled distance).

General issues during the field campaign included the
following:

® Weather: January is the rainy season in the Mojave
Desert. Unfortunately, in 2010 it rained more often and
more heavily than usual. As a result, a few full days of
testing were completely lost, and about 3 days had to
be cut short because of rain. Rainfall could be heavy at
times, flooding the dry lake beds. With any more than
a light sprinkle, the playa becomes very slick and loose,
quickly causing risk to the vehicles. Further, the ground
needs time to dry out after a heavy rainfall, meaning that
more than 1 day can be lost at a time.

® Glare: Specular reflections from the sunlight on the
moistened, high-reflectivity sand frequently caused

Journal of Field Robotics DOI 10.1002/rob
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glare in the VME stereo camera images, which had a
negative impact on the performance of VME localiza-
tion. For a more complete discussion, see Section 4.2.

® Rover Terrain Ability: The terrain ability of the rover
(shown in Figure 1) is very limited. Having no suspen-
sion and limited ground clearance means that very small
rocks can be hazardous. Although the existing sensor
suite certainly has the resolution to detect hazards for a
planetary-representative chassis, with the current chas-
sis there are still some undetected rocks that, although
not catastrophic, can cause the rover to stick and skid,
or undergo abrupt pitch and roll motions.

® Shadows in the Images: No effort was made to control the
direction of travel with respect to the sun, and there are
many instances in which the shadow of the rover ap-
pears in the stereo camera images. This ensures that the
motion filtering in the feature-matching algorithms is
fully exercised.

4. EXPERIMENTAL RESULTS
41.

Path planning, autonomy, and localization are key capabil-
ities for planetary rovers, and thus, the field trial looked to
quantify the performance of the AIR-GNC system in these
areas. Success of the terrain assessment and planning func-
tion is defined as finding a safe path to the goal where one
exists, and correctly identifying when a safe path does not
exist. Success of the full autonomous system is defined as
reaching the goal (or the closest traversable point to the
goal) when a safe path exists. The distance between the end
point of the localization estimate and the end point of the
ground truth, divided by the total path length estimated
from the ground truth, is used to express the localization
accuracy as a percentage of the distance travelled.

The ground truth position was measured using a Nav-
Com 3020M real-time kinematic differential global posi-
tioning system (RTK DGPS). The manufacturer’s specifica-
tion states a precision of 1 cm in RTK mode (RT-3020 GPS
Products User Guide, 2008). GPS latitude, longitude, and
altitude data were converted to the local frame, where pos-
itive X is East, positive Y is North, and positive Zis up (i.e.,
coincident with the local gravity direction).

Localization data were logged with respect to the ini-
tial rover body frame at the start of the traverse. Thus, the
ground truth must be expressed in the initial rover frame
before accuracy analyses can begin. The position offset is
easy to correct by simply subtracting the initial GPS posi-
tion from all subsequent measurements. Pitch and roll are
also compensated for, because the VME initializes itself us-
ing the inclinometry from the IMU’s accelerometers, which
give very clean measurements of the gravity direction be-
cause the rover is stationary. However, in the absence of an
absolute heading sensor on the rover, the alignment of the
ground truth becomes somewhat more challenging. Here

Performance Metrics and Statistics
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Table I. Traverse distances and mean localization errors, broken down by test area.
Traverse distance (m) Mean localization error (%)

Location # runs Min dist. Mean dist. Max dist. IMU-odom. H-L MSER SIFT
Boulder 5 12.8 32.1 48.2 2.9 8.7 3.2 4.2
Dunes 4 12.7 246.6 599.5 3.5 7.7 2.5 4.8
Mudflat 6 20.9 41.2 84.3 6.3 7.3 7.0 6.5
Plateau 6 34.7 174.7 867.8 1.7 4.6 3.5 6.0
Playa 5 13.9 179.1 316.6 3.3 9.8 3.0 25.6
Shore 2 16.4 68.4 120.4 2.1 4.2 2.3 2.5
All locations 28 12.7 124.1 867.8 35 7.3 39 8.8

Localization Percentage Error By Feature
All, baseline

I IMU-odom

B

|

0

Figure 14. Localization percentage error b

the localization estimate and ground truth were aligned us-
ing the first 5 m of the traverse.

In this project, with so many different options for the
VME algorithm, it was more desirable to align the ground
truth with the IMU-corrected odometry. Note that no mat-
ter which signal is used for the alignment, the accuracy re-
sults will be biased (even if very slightly) in favor of that
signal over the others. In the absence of absolute attitude
ground truth, this problem cannot be avoided.

4.2.

Of the 104 total runs recorded, 28 were focused on testing
the VME system. VME localization accuracy results are dif-

Results and Discussion

y feature, cumulated over all test sites.

ferentiated based on the visual feature used for localization,
and as well as the location of the test (Table I). Figure 14
shows the localization percentage error by feature based
on the data collected in all field test locations. For clarity,
the histograms are normalized by the number of runs. The
width of each bin of the histogram is 2% (of distance trav-
eled), and for clarity, the axis is cut off at 10% error. All runs
with errors greater than 10% (the likely outliers) are lumped
into a single histogram bin, which is presented to the right
of the regular histogram.

As can be seen in Figure 14, on the average MSER
outperformed both Harris-Laplace and SIFT. This suggests
that in these terrains the image regions had greater stabil-
ity than the local corner features. On the average, enhanced

Journal of Field Robotics DOI 10.1002 /rob
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Localization Percentage Error By Location
IMU-corrected odometry
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Figure 15. Enhanced IMU-corrected odometry localization percentage error across all test locations.

IMU-corrected odometry had slightly better accuracy than
MSER. Figure 15 and Figure 16 show the normalized local-
ization results of respectively the enhanced IMU-corrected
odometry and MSER, differentiated across the various test
locations. From these figures and the numerical results in
Table I, it can be seen that MSER outperformed enhanced
IMU-corrected odometry in the Playa area and the Dunes
area, the latter certainly because of the large amount of
wheel slippage.

The Mudflat location was particularly difficult for
every localization method, including enhanced IMU-
corrected odometry. The terrain was quite loose, which
caused considerable slippage. VME was primarily affected
by the high reflectivity of the terrain (for example, the glare
that was present in many runs). Moreover, the stereo cam-
eras used in this project for VME have automatic bright-
ness and contrast adjustment capability. One of the lessons
learned from this field trial is that automatic exposure ad-
justment may actually hinder the performance of the stereo
camera vision system. In many runs there is a signifi-
cant and sometimes intense glare from the sunlight, which
washes out large portions of the image and increases the
contrast. Example runs in which the glare is very promi-
nent include those on the Playa and in the Mudflat location
before the sun goes behind the mountains (see Figure 17).
Further, this glare is specular, so it changes with the relative
angle to the sun. Because of this, the glare patches them-

Journal of Field Robotics DOI 10.1002 /rob

selves do not make very reliable features, as they change
with viewpoint. This effect was not noticed during the pre-
vious field campaign in 2008, which took place during the
dry season (Bakambu et al., 2008), and is not considered
representative of Martian or Lunar surface conditions.

The autonomous system performed with a high suc-
cess rate. Of the 104 total runs recorded, 93 were executed
autonomously. In 12 cases, the rover did not reach its goal
location because of a GNC-related issue:

® In four runs, the rover stopped at an intermediate way-
point with a hazard within the blind zone of the ter-
rain assessment sensors. When the next intermediate
traverse was executed, the rover moved into the hazard.

® In four runs, the terrain assessment algorithm was un-
able to distinguish between sparseness of data points
due to field of view and range limitations of the sensor
due to hazardous terrain (e.g., a gulley). The algorithm
acted conservatively and classified the cell as hazardous,
and no path to the goal was found. This issue has since
been corrected.

® In four runs, the accumulated localization error caused
the rover to approach a hazard.

In total, the success rate of the planner was 91%, and
the success rate of the fully autonomous system (i.e., reach-
ing the selected goal) was 87%.



P1: SFO
Journal of Field Robotics

JWUS1277A/ROB-11-0016.R2

10 « Journal of Field Robotics—2012

January 4, 2012

3:13

Localization Percentage Error By Location
MSER, baseline

I Boulder. |

T T —— [ 1Dunes.

[ Mudflat |
[

Figure 17. Mudflat terrain with high contrast due to glare off
of the moist terrain.

Several challenging scenarios were constructed to test
the decision-making ability of CORTEX-based high-level
supervisory control. One example (not shown) placed the
rover within a ring of hazards, with the only escape route
within an occluded region of the sensor; the rover was able
to move and replan until it could detect the escape route,
and then proceed to the goal. In another scenario, shown in
Figure 18, the goal (denoted by the yellow object) was se-
lected in an untraversable location behind a bushy hill. To

Figure 18. Image of the terrain in Mudflat location: The goal
location is shown in yellow behind the bush.

reach the goal, the robot had to follow the ditch and move
around the hill. Figure 19 shows the path planned and ex-
ecuted by the robot. As can be seen, the robot did exactly
what was expected.

4.3. Summary of the Results

Table Il summarizes the localization accuracy of stereo cam-
era feature detectors shown in Figure 14.

Journal of Field Robotics DOI 10.1002 /rob
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Figure 19. Combined 3D cost map and path overlays. Note that the goal location is untraversable, so the rover stops at the nearest

traversable location.

Table Il. Localization accuracy summary for stereo camera
feature detectors.

Feature Min % error Mean % error  Std. dev. (%)
Harris-Laplace 0.8 7.3 O
MSER 0.4 3.9 2.8
SIFT 1.2 8.8 11.9
IMU-odom. 0.4 3.5 2.2

MSER had better accuracy and a lower standard de-
viation than either Harris—Laplace or SIFT. This suggests
that in these types of terrain, region-based features are
more useful than the local (corner) features. This is par-
ticularly noticeable in the Playa areas. MDA enhanced
IMU-corrected odometry did very well in most locations—
on the average, slightly better than MSER. MSER outper-
formed enhanced IMU-corrected odometry in the Playa
and Dunes areas. Harris-Laplace performed nearly as well
as enhanced IMU-corrected odometry in the Shore area
(the plot is not shown). The Mudflat location was particu-
larly difficult for all methods of localization. As mentioned
above, enhanced IMU-corrected odometry was subject to
slippage, and camera images were subject to glare.

Based on the above results, an elegant localization so-
lution would be to rely on enhanced IMU-corrected odom-

Journal of Field Robotics DOI 10.1002/rob

etry and continuous monitoring for wheel slippage. If the
slippage starts, the localization will switch from enhanced
IMU-corrected odometry to VME and stay in this mode un-
til the slippage ends. Another solution is to robustly ex-
tract and match long-range landmarks online to enforce the
observability of the estimator. The concept behind the ap-
proach is to localize the landmarks to a fixed frame (for ex-
ample, the initial starting pose of the rover), rather than as
part of the SLAM state. Observability of the estimator is
maintained as long as the landmarks are within the field of
view and operating range of the sensor. Offline results (see
Table III) using data collected during the field trials have
shown very promising results when compared against the
IMU-odometry and MSER-based estimates.

5. CONCLUSIONS AND FUTURE WORK

This paper has presented the performance of the VME in
the field trials of the AIR-GNC project conducted by MDA
in collaboration with and funded by the CSA.

The operational scenario of AIR-GNC includes ter-
rain scanning, modeling and traversability assessment, and
path planning and tracking. CORTEX-based supervisory
control was effective for monitoring and executing tra-
verses, which resulted in a noticeable increase in the auton-
omy of the test bed. VME-based feedback was successfully
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Table lll. Results of offline long-range landmark-based observable VME.

Location Distance (m) IMU-odom. (%) MSER VME (%) 3D landmark VME (%)
Mudflat, run 1 85 2.0 3.0 0.6

Mudflat, run 2 21 3.0 9.4 0.9

Plateau 34 15 53 13

used to close the path-tracking loop. A total of 3.2 km of
autonomous traverses was executed.

Enhanced IMU-corrected odometry performed very
well; on the average it performed slightly better than
MSER-based VME. MSER outperformed Harris-Laplace
and SIFT as a feature-extraction front end to VME.

Future work will include wheel slippage monitoring
and estimation using visual evidence. Improved odometry
would be a wide-ranging benefit. This could potentially in-
volve better state estimation using a dynamic model of the
rover. Robust long-range 3D feature extraction will be criti-
cal if long-range observation is to be used in practice.
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