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MATHEMATICAL APPROACHES TO MODELLING THE
OCULOMOTOR CONTROL SYSTEM

R. C. FRECKER* anp W. J. MACLEAN™*, University of Toronto

Abstract

Study of the eye-movement (oculomotor) control system provides insight into the
functioning of motor systems in general and presents a means of understanding the
diverse control strategies employed by the brain. This paper discusses the concept of
modelling with particular emphasis on the oculomotor system. Mathematical tech-
niques derived from engineering control systems theory are considered as they pertain
to oculomotor modelling.
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1. Introduction

Vision is one of man’s richest sources of information. Further, the ability to
move one’s eyes in a coordinated fashion enhances the ability of the visual sys-
tem by reducing the need for head motion, stabilizing the visual platform, and
enhancing stereoscopic vision through coordinated fixation of both eyes on
objects of interest.

The oculomotor (eye-movement) system comprises the various structural and
functional components which permit the direction of gaze to be adjusted to meet
the requirements of day-to-day activity. Its elements include six muscles
attached to the outside of each eye, the nerves which conduct signals to and
from these muscles, and the higher centers which process these signals. The
oculomotor control system is the aggregate of information-processing elements
which are integrated to provide an optimal relationship between eye position
and the demands of a current task. To better understand the function of this
control system it is helpful to be able to relate input and output functions quan-
titatively and to build mathematical models which take into account a wide
range of relevant control parameters, error signals and a variety of system dis-
turbances. Certain mathematical techniques have proved especially useful in
modelling the oculomotor control system.

This paper briefly describes the oculomotor system, gives a rationale for
modelling it, and discusses various modelling approaches. It then discusses a
number of mathematical tools which are used for building oculomotor models
and concludes by briefly speculating on the techniques which seem most likely to
advance the field.
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2. The oculomotor system

The eyeball is an approximately spherical globe, about an inch in diameter,
which is housed in a bony socket in the skull (the orbit). The orbit is lined with
fat to stabilize the eyeball and facilitate its movement (Figures 1(a), 1(b)).
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Figure 1. Anatomy of the oculomotor ‘plant’. (a) View of globe from above
showing muscle attachments to orbital apex. (b) A schematic represen-
tation of the eye showing the main intraocular elements.

The globe contains various elements which act together to form an image of
external visual reality on a multi-element photodetector matrix—the retina. The
cornea is a high-power fixed refractive element, while the lower-powered lens is
capable of adjusting its dioptric strength to bring objects at various distances
into focus on the retina. The iris diaphragm in front of the lens varies the size
of its central pupil in response to changing levels of brightness. A large body of
gel behind the lens (the vitreous humor) offers mechanical support to the lens
and shape to the eyeball. The liquid in which the iris exists (the aqueous
humor) is under slight pressure and also serves to maintain the sphericity of the
globe.

The myriad photodetector cells of the retina are responsible for color and
high spatial acuity vision (cones) and low-light-level (black and white) vision and
motion detection (rods). Both these cell types transduce light into minute
electrical signals through the interactions of photons with complex cellular
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molecules which, on absorbing photon energy, change shape. Color, intensity
and motion signals are preprocessed in the retina and then transmitted as coded
images along the 1000000 nerve fibres of each opfic nerve to the brain’s visual
cortex. In the central region of the retina is an area of densely packed cells,
primarily cones, called the fovea. Since this region has a very high density of
receptors it can better resolve spatial detail, and is therefore the preferred posi-
tion on the retina for the image of an object of regard. An imaginary line
drawn through the center of the pupil to the fovea is referred to as the axis of
foveation, or the line of sight.

Attached to the outside of each globe are six extraocular muscles which, by
coordinated contraction and relaxation, rotate the eye around three orthogonal
axes. Motion in the plane perpendicular to the line of sight predominates. The
moment of inertia of the globe is small compared with the forces generated by
the muscles moving it and movement of the fluid within the globe is considered
negligible in determining its moment of inertia (Robinson, (1981)). The lateral
and medial recti (Figure 1) move the eye horizontally; vertical movements are
generated by the superior and inferior recti and the superior and inferior
obliques. The neuronal signals which drive these muscles arise in different areas
of the brain.

The globe, the extraocular muscles and the orbital tissues are known collec-
tively as the oculomotor plant. The input to this plant comprises the nervous
signals to the muscles from the various oculomotor control centers in the brain.
The output is the position of the globe relative to the orbit—the position of the
line of sight relative to the head. This paper concentrates on the oculomotor
plant and on models which mathematically represent its dynamics.

The oculomotor system has a number of functions. One involves positioning
the globe so that the image of a given object falls on the fovea. If the object is
moving, the brain may track it with the eye and use information from the oculo-
motor system to estimate motion parameters such as direction and velocity. By
moving the eyes rather than moving the head the oculomotor system reduces the
requirement for head movement.

3. Why model the oculomotor system?

An important motivation for oculomotor modelling is academic curiosity, as
an understanding of the physiology of motor systems in general may be gleaned
by studying the oculomotor system. It is unique among bodily motor systems in
that, under natural conditions, it operates against a load (the moment of inertia
of the globe) that is constant and small (when compared with the forces that the
extraocular muscles generate). Since a number of techniques exist which allow
the position of the eye to be measured with high spatial and temporal resolu-
tion, the oculomotor system is an accessible and attractive system to study. As
when investigating any motor system, another objective is to gain an under-
standing of the strategies which the brain employs in generating particular move-
ment patterns.

Oculomotor modelling may also be used in non-invasive studies of central
nervous system (CNS) function. Since the inputs to a model may be the
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innervations supplied by the CNS, measurement of eye position, in combination
with ocular plant modelling, permits indirect ‘observation’ of CNS activity.
Effects of drugs and disease processes on the CNS may then be observed in a
quantitative and non-invasive manner. Normal functioning may also be
observed with the goal of inferring the control strategies used by the brain in
directing eye movements. Further, we may observe adaptation of the brain’s
control strategies in response to system perturbation, or unusual environmental
conditions. Properties of neuromuscular transmission or properties of the mus-
cles themselves can also be studied in this way.

4. Approaches to oculomotor modelling

Developing an accurate model of the oculomotor control system is an itera-
tive process in which a model is empirically evaluated and then revised. To start
the process one may use a priori knowledge of the system’s structure and func-
tion. The interrelationship of the extraocular muscles, the globe and the orbital
tissues is known from the relevant anatomy; knowledge of the dynamics of mus-
cles and tissues may be derived from the study of their cell structures and com-
position and from studies of their biomechanics. One can trace the motor path-
ways which provide signals to drive the muscles and the sensory pathways which
return information from the eye. Finally, our knowledge of system function can
provide interpretation of observed behaviour.

One generally starts with a preliminary conceptualization of the system.
Once a model has been constructed and implemented it is necessary to test its
performance against measured system behaviour in order to verify its relevance
and correctness. In dealing with the oculomotor system, measurement of eye
position is not the only source of data; direct measurement of nerve-fibre
activity and muscle activity (electromyographic recordings) may be used to pro-
vide information about system inputs. In collecting these data it is important to
understand the effects of instrumentation error and other errors which may
arise, because the system rarely operates under the exact conditions which the
model presupposes.

In developing oculomotor models, there are two basic approaches. Black-
box modelling deals only with input—output relationships and does not attempt
to explain the internal workings of the system. Homeomorphic modelling, on
the other hand, makes use of a priori information about the structure of the sys-
tem in order to create models in which the system’s inner workings are con-
sidered. The type of model employed depends on the intended use and on the
level of one’s understanding of the system’s internal structure and function.

Black-box models are developed on the basis of empirical data concerning
input—output relations (in this case nervous innervation to the muscles versus
eye-position) and lead to representations of the system that say little about its
internal workings. This provides a working description of system behaviour
which in many cases is simpler than descriptions which attempt to account for
internal processes. Sometimes these models are no more than exercises in curve
fitting. Early oculomotor models were of this type.
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One example is the empirical relationship between eye position 6(f), in
degrees, and the firing rate of the oculomotor neurons R(f) (expressed as the
number of nerve impulses per second) proposed by Keller (1981) to be

R() = kO(@) +1r0'(5) + mo"(0), 1)

where k, r and m are constants. Performing a Laplace transform leads to a
transfer function of the form

oGs) _ Kw;
R(s)  s?+2lw,s+w?2’

where 6(s) and R(s) are understood to be the Laplace transforms of 6(f) and
R(?), respectively. The resulting transfer function is seen to be second-order,
with w, representing the ‘natural frequency’ of the solution and I" the damping
coefficient. This second-order transfer function had been proposed earlier by
Westheimer (1954) as a result of observing that saccades resembled the step
response of a second-order system. Saccades are high-velocity eye movements
which serve to change the eyes’ fixation from one point to another. They are of
short duration, typically 30-70 ms, with duration increasing with increasing mag-
nitude of movement. They can reach velocities of 1000 degrees per second of
rotation (measured with respect to the orbit). An example of a relatively small
saccade is shown in Figure 2.

2

Measured Human Saccade
6 , 250

150} |

100+

S //
1k / | 0 J \/N_M-‘

0 50 100 0 50 100

Eye Position (degrees)
w
—
L a eedi
Eye Velocity (degrees/sec)

Time (ms) Time (ms)

Figure 2. Human saccade. Eye displacement and velocity plotted against time for
a saccade measured using a corneal reflection tracker developed by
Frecker and Eizenman. (Frecker et al. (1983), Eizenman et al. (1984)).

The neural input which drives a saccade is thought to be a pulse followed by a
step. A pulse-step consists of a short period in which the rate of neural
discharge is very high, followed by a period at a lower discharge rate. The final
rate is higher than the rate prior to the pulse, but not as high as during the
pulse. The input R(f) is the difference in the firing rates of the agonist and anta-
gonist innervation signals. The term agonist refers to the muscle which is
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contracting; antagonist refers to the muscle which is relaxing. This type of
agonist—antagonist action is called reciprocal innervation.

An improvement to Westheimer’s model was suggested by Robinson (1970)
who noted that the input to the system during a saccade was not a step but
rather a pulse-step. Robinson proposed a fourth-order model based on his
empirical observations:

o(s) 0.667(0.025 + 1)
R(s)  (0.3s+1)(0.06s+1)(1.03x10 752+ 0.004s + 1)~

This model generated more realistic saccadic trajectory profiles when compared
with actual eye-movement data. However, the acceleration profiles predicted by
the model were in poorer accord with the data. Both Westheimer’s and
Robinson’s early models were linear transfer-function models of the black-box
type. They offered limited insight into the internal structure and function of the
oculomotor system.

An alternative to the black-box model is the homeomorphic model, in which
each element corresponds to some known structure within the system.
Homeomorphic models are conceptually satisfying in that, since each model ele-
ment can be associated with some physical element of the original system, a
better understanding of the internal workings of the system is obtained. The
effect of varying individual parameters on model performance may be observed
directly in the model’s output.

The first linear homeomorphic model was proposed by Bahill in 1980. The
model is shown in Figure 3 and the defining equations are given in (4). Parame-
ter values are shown in Table 1. This model deals only with eye movements in
the horizontal plane. The model consists of four basic elements: the agonist
muscle, the antagonist muscle, the globe and the orbit. Each muscle is
modelled as a force generator F in parallel with an elastic element K;1 and a
viscous element B, and is connected to the globe through a series elastic element
Ksg. The globe has a moment of inertia Jp and is connected to a visco-elastic
element (consisting of Kp and Bp) which represents the orbital tissues. The
agonist and antagonist act in direct opposition to each other and are innervated
by separate neurological control signals N5y and N,nr; the input to each mus-
cle is passed through a first-order filter with time constants 7,g and Tanr,
respectively.

One of the advantages of such a model is that it allows for separation of the
signals controlling the muscles which form the agonist—antagonist pair for hor-
izontal eye movements. This is desirable because the two muscles (lateral and
medial rectus) are controlled by different areas in the brain stem (Zee and Lee
(1983)). Also, it allows for different time constants for the two muscles. Since
observed time constants are different for relaxing muscles and contracting mus-
cles, and are also different for the agonist and antagonist (Bahill et al. (1980)) it
is necessary to represent them separately. A comparison of the output of this
model with an observed human saccade, measured in the authors’ laboratory, is
shown in Figure 4.

3)
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model for eye movements (for horizontal movements the agonist—
antagonist pair are the lateral and medial recti; see Figure 1). This is
the plant model proposed by Bahill et al. (1983).

Table 1. Parameter values for a sixth-order linear homeomorphic model. The
parameters are for Bahill’s sixth-order linear homeomorphic model.
Note that the time constant for the accelerating agonist (taog.ac) 1S
dependent on the magnitude of the eye movement. This reflects that
this time constant models the fact that higher rates of neuronal
discharge, associated with larger movements, develop tension more
quickly than lower rates and therefore should be associated with a small-
er time constant. See text for definitions.
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Comparison of Model Output & Observed Saccade
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Figure 4. Observed saccade versus model output. The saccade shown in Figure 2
is compared with model output. The measured saccade overshoots
slightly.

In the system equations, the state variables were chosen to be eye position,
eye velocity, position of the agonist and antagonist nodes (the point where Kgg
joins the force generator, Figure 3) and the developed tension between the
agonist and the antagonist. A different choice of variables for the same system
might lead to a different but equivalent model. In fact, Enderle and Wolfe
(1984), (1987) chose eye position, velocity, acceleration, and jerk (rate of
change of acceleration) as the first four state variables in their more recent
model (Equation (4a)). The behaviour of the model is similar, as will be dis-
cussed below. A set of six differential equations written in terms of the state
variables describes the system. These may be written in matrix form (as in
Equation (4)) and state-space methods may be used to solve the system expli-
citly for certain cases.

5. Mathematical tools available

5.1. Time and frequency domain analysis. Systems-control theory is the basis
for quantitative study of a wide variety of mechanical, electrical, chemical and
biological systems. It often simplifies analysis by replacing differential equations
in the time domain with algebraic equations in the complex frequency domain
(as in Equations (2) and (3)). Solution for the transfer function of the system is
then reduced to algebraic manipulations of these equations. An example of the
use of systems control theory is Van Opstal et al.’s (1985) reconstruction of
neural control signals from measured eye movement trajectories. By observing
the output (eye position) during any type of eye movement (e.g., a saccade) and
by adopting a model, one can reconstruct the neural control inputs that would
be necessary to generate the observed output. Using this method, Van Opstal
et al. demonstrated the change in neural control signals associated with the
administration of a tranquilizing drug (diazepam). The normal and perturbed
signals are shown in Figure 5.
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Figure 5. Reconstruction of neural signals by inverse method. Reconstructed
pulse-step signals for normal and diazepam saccades. (a) Position sig-
nals, (b) computed horizontal velocity profiles and (c) reconstructed
neural control signals for 13 normal saccades with amplitude between
23° and 24° (left-hand column) and 5 saccades with amplitude between
22° and 23° made after an intravenous injection of 7mg diazepam
(right-hand column). Time scale from 10ms before to 150ms after
detected saccade onset. The diazepam saccades are much slower and
have longer durations than normal saccades. Velocity profiles and
neural control signals are more skewed in the diazepam saccades and
the dip, which appears in the reconstructed input signal for normal
saccades, is absent. Reprinted with permission of Pergamon Journals.
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It is also possible to work directly in the time domain. An nth-order dif-
ferential equation may be written as n first-order differential equations of n vari-
ables, in matrix form (see Equations (4a) and (4b), pp. 144 and 145). The n
variables are referred to as state variables and the resulting equation as a state-
space equation. State-space methods are useful regardless of which model is
chosen. The second- and fourth-order models, presented previously as transfer-
function models (Equations (2) and (3)), may easily be rewritten in state-space
form. The Bahill and Enderle models are already in this form. The general
form for a state-space equation may be given as

(1) = AW x() +u(r) +er), 5

where x is an nXx1 column vector, A is an nXn matrix, and u and e are nx1
column vectors. The vector u is the system input (or forcing function) and e is
a stochastic process (noise function). For the homeomorphic models given
above, the noise function is ignored and the A matrix is stepwise constant (i.e.,
it is constant within a given time period and only changes at discrete points in
time). We can solve Equation (5) explicitly for an interval 7 = [ty, ;] if it is
known that u and A(f) are continuous on 7. We can then write a solution as

x(t) = (p(t’ tO)x() + f (p(tys)u(s) ds’ (6)
where
® k(g 42k
o) = Y L exp ) %
k=0 ’

and Xg = x(to).

If A and u are stepwise constant, then the solution of Equation (6) is rela-
tively straightforward. One case where u is stepwise constant occurs when the
input is a pulse-step which is the innervation signal used to generate a saccade.
The explicit solution for this is given by

x = [expA(t—ty) — 1A lu+exp At —ty) x(ty), (8)

where [ is the nXn identity matrix. The solution is valid over the time interval
[ty, 4] in which A and u are constant. It has two parts: a particular solution
which depends on the value of the state at the beginning of the interval and a
solution to the homogenous equation which is an exponential function of the
state matrix A. For the solution to be stable the eigenvalues of A must all have
negative real parts, since otherwise the exponential will grow without bound.
expAt = Pexp(A) P!, where A is a diagonal matrix whose elements are the
eigenvalues of A and A = PAP~!. This also provides a computationally
efficient way of evaluating exp At if it is diagonalizable.

In order for this model to be useful, one needs to assign parameter values to
the A and B matrices. This, in general, is a problem in system identification.
For the homeomorphic model, many of the parameters may be difficult or
impossible to measure experimentally. Further, parameters are likely to vary
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from one individual to another, and vary with time for a given individual.
Therefore, it is desirable to be able to identify the values of the parameters,
using observations of the system, or through having prior knowledge of the
range in which the parameter values might lie.

5.2. Parameter identification. Parameter-identification techniques generally
work by minimizing a cost or error function with respect to the parameter
values. Since we do not know the true parameter values, this cost function is
written in terms of the system and model responses (Bekey (1976)). In Figure 6
we see the comparison of the measured output y(f) and the mode! output z(f) for
the same input sequence.

v(t)
+|
Oculomotor system x@) + Y f-."_(t_)._;l
u(t) Y (—e®
Model of oculomotor z(2) -|
system (parameter 8)

Figure 6. System identification. Schematic representation of parameter identifi-
cation using system and model.

The output value y(t) is corrupted by measurement errors or noise v(f). Since
the model depends on the parameters 8, we can write z(f) = z(t,3). We define
the error to be e(t,8) = y(¢§) —z(t,8) and choose the error criterion to be the
least-squares error criterion.

JB) = f e, B)Telt, B) dt. )

0

Other error criteria are available, but the least-squares criterion is well studied
and in some cases is optimal, depending on noise characteristics. By minimizing
J with respect to 8 we can choose values for the parameters 8. If the second-
order statistics of v are known (R = E[v "v] is known) or can be estimated, an
improved criterion {weighted least-squares error) is given by

Jp) = J " e(t, )R e(t, B) dt. (9a)

There are many algorithms for minimizing J(8) and many relevant ‘off-the-sheif’
software packages. One of the more popular methods is the method of steepest
descents. This method makes use of the fact that J(B) is a surface in n-space
(called the error-performance surface) which will have at least a local minimum.
Starting with an initial guess 8@ we can estimate ¢ *" as follows:

BtV = BU —KgradJ(BY). (10)
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Starting with B© this method attempts to find the bottom of the error-
performance surface, which is the point of minimum error, by travelling along
the maximum gradient. The constant K is a step-size parameter on which the
stability and speed of convergence is dependent. When, and if, 8 converges to
a stable value, one has found an optimal 8 for the model. Given the relatively
low cost of computer time and the popularity of state-space methods, this is
currently a popular technique. Other methods include Newton-Raphson
methods, random searches and transfer-function identification (Bekey and
Yamashiro (1976)).

5.3. Parameter sensitivity. In identifying parameter values which result in
optimal model performance, it is instructive to have a measure of the sensitivity
of model behaviour to changes in each parameter. The sensitivity of output
state x; to a change in parameter 8; may be written as

5x,-
Sij = S_B] )

5, = [ ?&] .
B; xi 18,
This helps to identify which parameters, when changed by a small amount, will
cause a large change in model behaviour. Such parameters are important to
identify so that their values may be estimated with the greatest accuracy. Sensi-
tivity analysis aids in refining model structure by showing which elements are
relatively important or unimportant, warning of unusual model behaviour and
evaluating model validity (Bahill (1980)). (Table 2 gives a partial ranking of the
sensitivity of parameters in Bahill’s homeomorphic model.)

(11)

or, in relative terms, as

Table 2. Rank of parameter sensitivities in the sixth-order linear homeomorphic

model.

KagLr 1 Bant 8
KaG-sE 2 KanT-LT 9
Bp 3 TANT-DE 10
Bac 4 1
TAG-AC 5 TANT-AC 12
KanTSE O TAG-DE 13
Kp 7

5.4. Time-optimal control. It was noted in the introduction that observation
of the oculomotor system could be used to infer control strategies used by the
brain in controlling eye movements. One such strategy currently being investi-
gated in our laboratory is that of time optimality. A time-optimal strategy
implies that saccadic eye movements are carried out in such a manner as to
minimize the duration of the movement and, subsequently, the disruption of the
flow of visual information to the brain. Such a strategy could be argued in evo-
lutionary terms on the basis of increased survival capacity resulting from
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minimized visual disruption during saccades. Several authors, notably Clark and
Stark (1975), Lehman and Stark (1983) and Enderle and Wolfe (1987) have
investigated this concept using both linear and non-linear models. Their results
suggest that the eye may be controlled during saccades by an on-off multi-pulse
signal. By combinations of pulses, in which innervations to the muscles are
turned full-on or full-off, the eye may be moved to its new position in minimum
time. A mathematical definition of time optimal control (Enderle and Wolfe
(1987)) might be the requirement that the eye movement trajectory 6(r) must
minimize the function

[l
Jw) = [ de+ (669 ~PITGl6) ~D) = 1+ [0 ~ DY Gloe) ~D) (12
0
with respect to u, the neural-signal responsible for the motion. Here G is a
weighting matrix, D is the desired final state (or destination) of the system, 6(¢)
is the state of the system at time ¢ and # is the terminal time. J(u) therefore
takes into account the time to reach the final position as well as the error in the
final position from the desired final position. The resulting value of u would be
the optimal control signal. A result of minimizing is that at any time, u is at its
maximum or minimum value (a bang-bang controller) (Enderle and Wolfe
(1987)).

6. Model evaluation

Knowledge of the physiological signals which actually drive the extraocular
muscles is prerequisite to adequate model evaluation. While recordings from
single nerve cells during a saccade have been shown to resemble a pulse-step,
the relevant input to the model is the sum of activity from all active nerve cells.
It is unlikely that all cells fire with precise synchrony or that their duration of
firing is the same. Also, many measured saccades overshoot their target and are
thought to be corrected by a reversal pulse. The physiological existence of such
a corrective pulse is unproven.

Nonetheless, a variety of empirical approaches to model evaluation have
been used. One approach is to sum the squared error between the position esti-
mates from the model and the measured eye position. Bahill (1980) compared
the second-, fourth- and sixth-order models for a 10-degree saccade in this
manner and found that the sixth-order model performed best, with a total error
of 49><10_6degrees2. The second-order model was 3- to 46-fold less accurate,
depending on how it was conceived. Greater accuracy was obtained with an
underdamped second-order system and a step input; less accuracy was obtained
with an overdamped system and a pulse-step input. The latter, however,
appears to be more realistic in terms of known physiological and mechanical
input and plant parameters. The sixth-order model also produced acceleration
profiles that more closely matched observed profiles than did the second-order
model, suggesting overall a more accurate description of oculomotor behaviour.

The parameters of the sixth-order model used to generate the plot in Figure 4
were not tailored to the particular measured saccade. In fact, parameter values
obtained from the literature were used. That a close correspondence was
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obtained suggests a degree of model robustness. However, a sixth-order model
is undeniably more difficult to work with than a second-order model, and certain
uses may not justify the extra computational effort.

7. Future approaches

In what direction should new efforts towards oculomotor modelling move?
What does one hope to gain through such efforts? First is the development and
testing of better oculomotor models. For models to be useful in the long term
they must be subjected regularly to scrutiny, revision and validation through
empirical testing.

With improved models a variety of processes might be investigated. The
study of control strategies appears important, with particular attention to the
manner in which adaptation takes place. Study of cerebellar anatomy suggests
the existence of structures with adaptive properties (Grossberg (1986)). These
may be involved in adaptation to new external and internal (physiological) con-
ditions and in the learning of fine motor responses. Quantitative measurement
of adaptation processes should help to identify the adaptive structures and the
relevant parameters.

Neurophysiological processes that affect muscle performance may be probed
by studying the effect of time on model parameters. This would be facilitated
through the development of algorithms which track model parameters continu-
ously, a problem closely related to that of adaptive filtering. Such studies, when
linked to known neurotransmitter mechanisms, may also lead to a better under-
standing of the effects of drugs on human performance and perception.

Finally, modelling may help satisfy our curiosity about the functioning of
human motor systems. Motion is an important aspect of daily functioning, and
it is helpful to understand the brain’s control of motion in order to better under-
stand the brain itself.
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