Harmonic Analysis Using Neural Networks

Vincent Tsui & W. James MacLean
Edward S. Rogers Sr. Department of Electrical & Computer Engineering,
University of Toronto, Toronto, Canada, M5S 3G4

Abstract

This paper describes Harmonic Analysis Network
(HAN), a system of neural networks that performs
harmonic analysis on musical scores. Test results
on 18 J.S. Bach chorales are presented. An exam-
ple analysis is also shown.

1 Introduction

There has been ongoing work on the development
of Harmonic Analysis Network (HAN), a system of
feed-forward neural networks that performs harmonic
analysis on musical scores. This system takes note
values as input; other information, such as note dura-
tions, key signatures, and cadence points, is not used.
The output that the system gives is the complete har-
monic analysis, which includes the key, root, quality,
and inversion of each sonority of the piece. A sonority
is defined as the set of sounding notes present when-
ever any note is articulated in the composition [4].

In the past, the task of computerized harmonic
analysis has been researched, most recently by
Taube [4] and Temperley [5]. Both of their works use
an algorithmic approach. In particular, the method
described in [4] was used to perform harmonic anal-
ysis on J.S. Bach chorales. There has also been work
done in the past on training neural networks to har-
monize J.S. Bach chorales given the melody line [3].
Given the difficulty of performing harmonic analysis
using a few explicit and simple rules, we attempt to
perform this task using neural networks. We chose
to analyze Bach chorales due to the large sample size
and their stylistic consistency.

2 Methods

The task of harmonic analysis is separated into four
parts: the first part is the analysis of the key of each

N 1‘ 2I 3 4I 5 61 7 8| °|
Yy D Il I Il Il d =
y TN £) | | P

52> C ¢ P b4 p-— Y
g i)l - - T
s i f — -
75— — I — -

v 1 ! — } i
g i v i viio® i VI V

Figure 1: The opening phrase from Bach chorale “Auf
Meinen lieben Gott” with analysis.

sonority; the second, analysis of root; third, analysis
of quality; and finally, analysis of inversion. We will
now describe each part in detail.

2.1 Key Analysis

This part of the analysis uses IV feed-forward neural
networks with one layer of hidden units (the exact
value of N will be stated later). The networks in
this part are collectively known as Key Network. The
training set consists of 20 Bach chorales (10 major, 10
minor) chosen in an arbitrary way. All the chorales
were taken from [1]. Each and every element in the
training set corresponds to each and every sonority
of the 20 chorales. Each input element of the train-
ing set consists of the notes (in letter names) of its
corresponding sonority, as well as the notes of the ny,
previous and ny next sonorities (the relevance of this
will be apparent soon). Different notes with the same
letter name are ignored. Each output element of the
training set consists of the key of its corresponding
sonority.

For example, the chorale “Auf Meinen lieben Gott”
was included as part of the training set, the beginning
of which is shown in Figure 1.

If ng, = 2, then the training input corresponding to
sonority #3 would be {G, Bb, D, C, Eb, G, Bb, C,
Ev, G, A, C, E, A, C, Ft}. Note that the doubled

G in sonority #1, doubled C in sonority #2, and the
doubled A in sonorities #3 and #4 only appear once
in the training input. The training output for the
same sonority would be {g-}.

To be sure, the key of any particular sonority can-
not be determined using only that sonority alone. Us-
ing the example above, the notes of sonority #3 can
at least belong to Bo+, Eb+, g-, or c-. But the ap-
pearance of Eff in sonority #4 make all but g- very
unlikely. Hence, it can be seen that we would need
the information from the surrounding sonorities to
help decide the key of the current sonority. There-
fore, we have the idea of including the notes of the ny
previous and nj, subsequent sonorities in the training
input, creating an “input window,” 2nj + 1 sonori-
ties wide, centered on the current sonority. Different
sizes of windows, with 2 < nj < 6, were used. For
each value of nj, three networks with identical ar-
chitecture were trained with different initial values;
they were then joined to form a committee [2]. For
any sonority, the output of the committee is simply
the mode of the outputs of the members of the com-
mittee; if there is a tie, then the output is randomly
chosen among the highest occurring outputs (for a
committee of three, this would occur when all mem-
bers gave different outputs). Since there were five
different values of nj used, there resulted five differ-
ent committees (and hence giving N = 15). These
five committees were joined together to form another
committee to obtain the final output. Thus we have
a “committee of committees.” This idea was used
because networks of different values of n; would po-
tentially do better than others at different passages.
Networks of a smaller value of n; would do better at
passages that change keys often. Networks of a larger
value of nj; would tend to “smooth” out passages: in
a place where the piece is changing from one key to
another, they are less likely to switch back and forth
between the keys; once they decide to switch keys,
they are more likely to remain there.

One detail that needs to be mentioned is that in
the 20 training chorales, not all keys occur with the
same frequency. If the training were done with the
20 chorales in their original keys, then it is likely that
certain keys would be given undue preference and
some remote keys would even be ignored. Therefore,
all training chorales were transposed 12 times, such
that all the chorales would be found in all keys up
to 6 sharps and 6 flats. The total number of sonori-
ties in the original 20 chorales is 1507. Therefore,
the total number of elements in the training set is

1507 x (12 + 1) = 19591.

2.2 Root Analysis

Root Network consists of a committee of three feed-
forward neural networks. The training input set con-
sists of the notes of all sonorities of the 20 training
chorales, as before, but now all elements of this set are
transposed to the same reference key. So now there is
only one copy of the training input set, as opposed to
13 previously. This is possible because we now have
the key information for every sonority (it was pro-
vided as output of Key Network), and also because
the output of Root Network is the same no matter
what key the sonority is transposed into (since the
root is by definition relative to the tonic of the key).
The only other additional information included in the
training input set is whether the sonority is in a ma-
jor or minor key. This is obviously necessary since,
for example, a C-major chord would be I in C+ but
III in a-. The training output set consists of the root
of each sonority, which is one of the following: I, II,
IT1, IV, V, $VI, $VII, §VI, §VIL. Note that Root Net-
work does not attempt to distinguish between sonori-
ties with the same root but with different qualities.
This is the task of Quality Network, described next.
Continuing with the example in Figure 1, if the ref-
erence key were a- (and window size n, = 2), then
the training input for sonority #3 would be {-, A, C,
E,D,F, A C, D, F, A B, D, Ft, B, D, Gt}. The
corresponding training output is {IV}. The training
output is {IV} whether the corresponding training
input is transposed to a-, in the original key of g-, or
any other minor key.

Thus, with the knowledge of key obtained in Key
Network, we were able to train Root Network with a
much smaller number of training inputs. The result
is faster training time. As for the window size, it is
seen that for the determination of the root, the infor-
mation outside the immediate vicinity of the sonor-
ity in question is irrelevant. Most of the time, only
the notes of the sonority in question are sufficient to
determine the root for that sonority. For example,
the notes of sonority #3 are {Bb, C, E, G}, and we
know the key is {g-}. Clearly, only the IV chord is
suitable. However, sometimes a little bit of context
is still needed. Consider this phrase from the same
chorale shown in Figure 2. With no context informa-
tion, the root of sonority #6 seems like a III chord.
But when we look at the sonority previous to it, we
realize it is just a I chord in passing. In our experi-

A 1 2 3 4 5 6 78 9 8 no alg. w/alg.
g'J" T —— . . o F Suite 7# 7# Accu. ## Accu.
% r hﬁ | \ Son. | Correct | (%) | Correct | (%)
(S L e E . | T | 558 | 463 | 830 | 498 | 89.2
D o I — ¥ TP—‘_
ZH— r — —] —] ‘P 2 804 659 82.0 728 90.5
Bbivi Vi . " i v . 142 | 1362 | 1122 824 1226 90.0

Figure 2: Another phrase from Bach chorale “Auf
Meinen lieben Gott” with analysis.

ment, we used a window size n, = 2. Similar to Key
Network, we used a committee of three networks to
obtain the final output for Root Network.

2.3 Quality Analysis

Quality Network also uses a committee of three feed-
forward neural networks. The training input set is
identical to that of Root Network, minus the mode
(major or minor). The window size used is n, = 1.
The training output set consists of the quality of
each sonority. The different types of qualities Qual-
ity Network attempts to classify include +, -, x (aug-
mented), o (diminished), v7, 47, -7, 07, and ¢7 (half-
diminished 7th). Quality analysis turns out to be an
even easier task than root analysis. The mode input
is not necessary in this analysis because a sonority’s
quality is not dependent upon whether the current
mode is major or minor. In Figure 2, the g-minor
chord in sonority #2 is a minor chord, whether the
key is g-minor or Bb-major. As with the root analy-
sis, a little context information is necessary to provide
more accuracy. Sonority #6 by itself has the quality
-7; but with the context information, we can see that
it is a + chord in passing.

2.4 Inversion Analysis

Inversion Analysis is by far the most simple and
straightforward. It does not involve the use of neural
networks because no context information is required.
It just involves the use of a look-up table indexed by
the key, root, and quality of the current sonority. The
output is the inversion of the current sonority.

2.5 Pivot Chord Selection

The last task of HAN involves determining pivot
chords, if and when they exist. Up until this point,

Table 1: This table shows the prediction accuracy of
the system of neural networks on the two suites of
Bach chorales with and without the improving algo-
rithms.

only one key is determined for each sonority. A pivot
chord exists when a piece is changing keys, and at the
point of transition, a sonority can be found to belong
to both keys. The selection algorithm is straight-
forward, as follows: If a passage in key X ends at
sonority #n and a passage in key Y starts at sonor-
ity #(n + 1), then if the notes of sonority #n belong
to key Y, then the pivot chord is at sonority #n;
otherwise, if the notes of sonority #(n + 1) belong to
key X, then the pivot chord is at sonority #(n + 1);
otherwise, there is no pivot chord.

3 Results and Discussion

The system of networks was tested on two suites of
Bach chorales. Suite 1 contains 8 chorales: they are
also some of the chorales chosen to be analyzed in [4].
They are numbers 7, 9, 30, 50, 91, 206, 211, and 284
in the Kalmus Edition. They were chosen in [4] be-
cause they “provide particular analytical challenges.”
Suite 2 contains 10 other chorales which were arbi-
trarily chosen. They are numbers 26, 32, 57, 93, 138,
154, 175, 189, 201, and 224. The prediction accuracy
of the networks on these chorales are presented in
Table 1. After analyzing the mistakes the networks
made, a number of algorithms were developed to im-
prove the overall performance. A total of three algo-
rithms were implemented, one for Key Network, one
for Root Network, and one for Quality Network. Each
algorithm takes as input the output of its associated
Network, performs the intended function (described
below), and provides the output for the next Network
or for Inversion Analysis. Table 1 also shows the re-
sulting improvement.

Briefly, the improvement algorithm for Key Net-
work finds sonorities where (i) the keys determined
for them are theoretically impossible; (ii) consecu-

tive numbers of them are determined to be in the
same key, yet none of them serve a dominant func-
tion in this key. When sonorities satisfying condition
(i) are found, the key output is changed to that of the
second-choice output of Key Network, if this output
will negate condition (i); otherwise, it is changed to
the output for an adjacent sonority, if this output will
negate condition (i); otherwise, nothing is done. The
second-choice output of Key Network is the second
highest-occuring output of its final committee. When
sonorities satisfying (ii) are found, the output for the
sonority immediately previous to these sonorities is
assigned to these sonorities. The algorithm for Root
Network finds sonorities whose roots are completely
deterministic given the key; for each, it calculates the
expected root output and compares it with the actual
output. If they do not match, the actual is replaced
by the expected. By completely deterministic, we
mean the sonority contains all and only the notes of
a triad, or all the notes of a seventh chord. Granted,
the roots of most sonorities are completely determin-
istic (79% in Suites 1 & 2), and thus the improvement
algorithm, running by itself, would already produce
mostly accurate results, but Root Network does much
better just by itself (92%) and even slightly better
with the improvement algorithm (93%). The algo-
rithm for Quality Network performs in a similar way
to that for Root Network.

An example analysis by HAN is shown in Figure 3.
The analysis is mostly very well done, with a few ex-
ceptions: sonority #3 should be analyzed as g-; the
pivot chord in sonority #16 should occur on the first
half of the beat; sonority #40 should just be a i chord
in passing. The errors at sonorities #3 and #40 rep-
resent a class of errors where the immediate context
is preferred over a wider context, especially when the
wider context seems strange. The problem at sonor-
ity #16 is that the pivot chord should ideally occur
on the first half of the quarter note; although we do
not, consider this to be incorrect, the improvement
can be done by considering the note durations in the
pivot chord selection algorithm. By comparison, the
analysis of this chorale by MTW [4] was available
at the author’s website. This analysis performed cor-
rectly in the aforementioned sonorities, but at sonori-
ties #19-20, #22-23, and #27-29 it modulated briefly
into C+, which was not called for. So from this exam-
ple alone, it seems that both HAN and MTW perform
well nearly all the time, but each has its own minor
problems to deal with.

ho CON A 6, 192 RH
A ——— —T——+ e o —
@4 . T e e B i, (ST B <1 B
o o] e TIEITES
i R
L R S o F— B R — " B)
= | e — fiefoe o e
| Cr T T T [T
EVVE oeve o1 v Tl vor !
C:1 G: vii 1 GeIVyiivii® T IV Ifiig v 7
g sy A J 10 o
[m— - I —— f T T N
(t@z T e E— —— " E— — =
AN A N i
Fave | v lA o el b4 =4
e — H~—rF—oF o
X I T ' o T Il T I I
WT [~ = -
soy6 6
1

—_
=Y

<

a VI iv? i VO I d: VIIvii ™
I GINV I

Figure 3: Example analysis by HAN from Bach
chorale “Ich dank’ dir, Gott, fiir all’ Wohlat”.

4 Future Work

More work is needed to improve the pivot chord se-
lection algorithm. As well, we plan to try different
sizes of input windows, especially for Key Network.
A further goal is to test HAN on a second set of Bach
chorales. In addition, it would be interesting to re-
train HAN on pieces by other composers and see how
well it performs.

5 Acknowledgements

The authors wish to thank Mark Sallmen for verifi-
cation of hand analysis of Bach chorales.

References

[1] J.S. Bach. 389 chorales. Kalmus Edition K06002,
Belwin Mills Publishing Corp.

[2] Christopher Bishop. Neural Networks for Pattern
Recognition. Oxford University Press, 1996.

[3] Dominik H6rnel and Wolfram Menzel. Learning
musical structure and style with neural networks.
Computer Music Journal, 22(4):44-62, 1998.

[4] Heinrich Taube. Automatic tonal analysis: To-
ward the implementation of a music theory work-
bench. Computer Music Journal, 23(4):18-32,
1999.

[5] David Temperley. An algorithm for harmonic
analysis. Music Perception, 15(1):31-68, 1997.

