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Abstract

Expanding Stereo-Dispariyy Rangein an FPGA-system While Keeping Resource

Utilisation Low

Divyang K. Masrani
Master of Applied Science
Graduate Departmert of The Edward S. RogersSr. Departmert of Electrical and
Computer Engineering
University of Toronto

2006

We presen the design and implemertation of a Field-Programmable Gate Array
(FPGA) baseddensestereodepth measuremensystemthat is capableof handling a very
large disparity range. The throughput of the systemis 60 frames/secondon 640£ 240
images. Imagerecti cation and consistencyched improve accuracyof the results. The
systemis basedon the Local Weighted Phase-Correlationalgorithm [?] which estimates
disparity using a multi-scale and multi-orientation approad. Though FPGAs are ideal
devicesto exploit the inherert parallelism in many computer vision algorithms, their
“nite resourcecapacity posesa challenge when adapting a systemto deal with large
imagesizesor disparity ranges.We utilise the temporal information available in a video
sequenceto designa novel architecture for the correlation unit to achieve correlation
over a large rangewhile keepingthe resourceutilisation very low ascomparedto a naive

approad.
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Chapter 1

In tro duction

The goal of a computational vision systemis to automate the task of generatinga descrip-
tion of a givenscenehrough an analysisof capturedimagesof the scene.The description
of the scenecan consistof information sud asthe location of single or multiple objects

in the scenethe idertity of objects, or even any actions an object is performing.

The task of building a general purpose computational-vision systemis a \grand-
challenge” due to the compute-irtensive nature of many vision algorithms. Howewer,
researbers have beensuccessfuln designingalgorithms and building systemsthat deal
with some speci ¢ tasks of the human vision system. One important feature of the
human vision systemis its ability to perceivwe depth of a viewed scene. This ability to
perceiwe depth, known asstereo vision, or stereopsisis made possibleby the di®erencean
viewpoints of the scenewhen sensedby our left and right eyes. The information about
depth in a scenes of greatimportancebecausat helpsus navigate in athree-dimensional

ervironment and aids us in recognisingobjects of interest, amongother tasks.

In computer based stereo-visionsystems, a stereo-rig is a pair of camerasplaced
side-by-side, much like our eyes, to capture the left and right images. The processing
required to extract depth information from the image pair may seemsecondnature

when performed by the human brain due to its immenseand complex computational
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capabilities. In a stereo-visionsystem, this processingis carried out using a computing
platform that can be basedon software, hardware, or a mixture of the two. The depth
information is encaled in the disparity, de ned as the di®erencein pixel locations of
correspnding points in the image pair. The disparity is inversely proportional to the
distance of an object from the cameras,so the disparity increasesas objects get closer
to the cameras. The estimation of this disparity then becomesthe primary task of a

stereo-visionsystem.

In the simplest setup of a stereo-rig, where the optical axesof the two camerasare
parallel and the vertical axesare aligned, correspnding pixels lie at the samevertical
coordinate in the image pair. The seart for the correspnding pixel is thereforelimited
to the samesanline in the image pair, which allows processingof ead scanlineasthey
arrive. In the moregeneralcasewherethe camerasare not alignedasdescribed above, the
seart for correspnding pixel may spanacrossnumerousscanlinesand this increaseshe
computational load of the system. When the camerasare not in the ideal setup, Image
recti c ation of input imagescan be performed. recti c ation is the processby which the

input image pair is warped to resenble the output from an aligned stereo-rig.

Often, when viewing a scenefrom di®erer viewpoints asin a stereosetup, objects
visible in oneimage may not be visible in the other image. A foregroundobject hides,
or occludes di®eren parts of the badkground in the left and right views, a phenomenon
known as occlusion. In addition, the information presen at the left edgeof the image
captured by the left camerais not available in the right imageand vice-versaasthis part
of the scenefalls outside the viewing areaof the other camera. This further complicates
the task of accurate disparity estimation becausepixels visible in one image may not

have a correspnding match in the other image of the pair.

Many stereo-visionapplications require the depth information for every single pixel,
which translates to nding a densedisparity estimate the estimation of disparity for

ewery singlepixel in the image. Someof the most commonly usedcamerastoday capture
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imagesthat are 640£ 480 pixels in dimensionat a rate of 30 frames per second(fps).
To bridge the gap betweenthe desiredframe-rate responseand the actual performance
that generalpurposecomputing platforms can provide, appropriate hardware accelerators

needto be used.

Densestereo-visionalgorithms basedon a technique called correlation have inherert
parallelism which can be exploited to achieve signi cant improvemerts in the execution
time of the algorithm. Hardware acceleratorsin the form of Digital Signal Processors
(DSPs), recon gurable devicessud as Field ProgrammableGate Arrays (FPGASs), and
Application Speci ¢ Integrated Circuits (ASICs), all provide a viable alternative to take
advantage of inherert parallelism as opposedto the use of expensiwe and large-scale

parallel computersfor a similar task.

DSPs are commonly usedto speed up the computation of many signal and image
processingalgorithms. Though easyto program, DSPs have a xed architecture that
limits the kind of operations that can be performed. DSPs therefore do not provide a
system-on-a-hip solution which is a drawbad when spaceand mobility are a concern.
ASICs on the other hand provide the greatestamourt of °exibility in designingthe
architecture but su®erfrom a long and tedious design process. Furthermore, the high

cost of designingand fabricating an ASIC can make it prohibitive to use.

Recon gurabledevicessut as FPGAs provide a middle ground. The designprocess
is shorter and cheaper than for an ASIC and they provide much greater °exibilit y than
DSPs making it possibleto dewlop a variety of algorithms from start to end on the
FPGA. Another important advantage of FPGAs is that they arerecon gurable,a process
that can be completedin a spanof milli-seconds,so that the samechip can be usedfor
di®eren algorithms. This makes FPGAs ideal for computer-vision tasks which often
require the result from multiple algorithms to accurately make a decision. Take the case
of image segmetation. Methods usedfor image segmetation rely on information sud

as texture, depth, and colour. No one method will accurately perform segmeration in
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ewvery scenario,but a combination of information providesthe best solution. An FPGA
can be easilyrecon guredwith thesedi®eren algorithms as needed.

While designingwith FPGAs is fasterthan designingApplication Speci ¢ ICs (ASICs),
it su®ersfrom the problem of xed resources.In an application basedon a serial CPU
or DSP, one cantypically add memory or disk spaceto allow the algorithm to handle a
larger versionof the sameproblem, for examplelarger image sizesor increaseddisparity
rangesin the caseof stereo. System performancein terms of timing may su®er, but
the advantage of sud serial implemertations is that the new systemstill runs. In the
caseof FPGA-basedsystems,thereis a nite amourt of logic available, and whenthis is
exhaustedthe only solutionis to add another deviceor modify the algorithm. Not only is
this costly from the designpoint of view, but may alsoinvolve the additional designissue
of how to partition the logic algorithm acrossse\eral deviceswhich is non-trivial. Apart
from nding logical partitions in the algorithm, issueswith transferring large amourts
of data from one FPGA to anotherin the limited bandwidth betweenavailable between
FPGAs and alsomeetingstrict timing requiremerts make this a challengingtask. Keep-
ing this in mind, it is important to devisea suitable architecture for the vision system

on hand for a successfulmplemertation on FPGAs.

1.1 Thesis Objectiv es and Contribution

Stereodisparity estimation is a prime application for a hardware acceleratedcomputer
vision system. Sincestereocan provide depth information, it has potential usesin nav-
igation systems,robotics, object recognition and surveillance systems,just to name a
few. Due to the computational complexity of many stereoalgorithms, a number of at-
tempts have beenmadeto implemert sud systemsusing hardware [?, ?, ?, ?], including
recon gurable hardware in the form of FPGAs [?, ?, ?, ?, ?]. One of the more recen

attempts at deweloping a stereo-visionsystemis descriked in [?]. The systemis based
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on the Local Weighted PhaseCorrelation (LWPC) algorithm [?] and is implemerted on
the Transmogri er-3recon gurable computing platform [?]. Though the systemprovides
densedisparity estimatesat 30 fps, it hasseweral major limitations. The amourt of logic
resourcegequired by the systemis directly proportional to the largestdisparity that the
systemcan support. The systemis capableof handling a maximum disparity of only 20
pixels, which for the particular set-up of the system does not generateaccurate depth
information for objects closerthan 2 metersfrom the camera. This is a seerehinderance
to the useof the systemin many applications sud as autonomousnavigation. Further-
more, the systemdoesnot attempt to rectify the input images,which a®ectghe accuracy

of the results, and it supports an imagesizeof only 256£ 360 pixels.

In this work, we addressthe speci c limitations of the previous system mertioned
above. The goal of this work is to dewelop a versatile real-time stereo-visionplatform
with various saliert features;capability to handle very large disparities, improved accu-
racy by pre-processinginput imagerecti cation), andthe ability to handlelargerimages.
The highlight of the work is the developmen of a novel architecture that can handlethe
correspndencetask for sceneswith very large disparities, but without increasedresource
usageon the FPGA, ascomparedto [?]. The key to achieving large disparity correspn-
dencematchesis the useof shiftable correlation windowsthat track the disparity estimate
for ead pixel over time, aswell assecondaryroving correlation windows that explorethe
correlation surfaceoutside the range of the shiftable tracking window in order to detect
new matcheswhen the tracking window is certred on an incorrect match. In our work,
the shiftable tracking window is termed the Primary Tracking Window (PTW) and the
window that performsroving correlation asthe Seondary Roving Window (SRW). The
basicassumptionin our approad is that, in most casesdisparity valuesdo not change

radically betweenframes,thus allowing someof the computation to be spreadover time.

The thesisis organisedas follows. Chapter 2 descrikesthe relevant badground in

stereo-visionand recon gurablecomputing systems.In Chapter 3 we presen the main fo-
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cusofthis thesis;dewelopmen of hardware architecturesfor imagerecti cation, expanded
disparity range support, and consistencyched of stereodisparity estimates. Chapter 4
compareghe stereo-systemn this work with othersin the literature and disparity results
from the systemare also presened. We concludein Chapter 5 with a summary and a

discussionof possibledirections for future work.



Chapter 2

Background

In Chapter 1 we establishedthe focus of this work; deweloping a novel architecture for
a stereo-visionsystemthat is capableof supporting very large disparity range without
a correspnding increasein the logic resourceusage. In order to achieve this with the
limited resourceso®eredby FPGAs, an understanding of the various stereo matching
algorithms and knowledgeof the hardware technology that will be usedis required.
This chapter rst provides an overview of binocular stereovision, the options avail-
able for stereo-matting and a justi cation for the selectedtechnique for this work in
Section2.1. Section2.2givesan introduction to FPGA technologyand the recon gurable
computing platform usedin this work. Finally, in Section2.3, a brief review of previous

work in hardware-basedcomputer vision and image processingis preserted.

2.1 Theoretical Basis

Stereopsisis the processin visual perceptionleadingto perception of depth or distance
of objects. Depth from stereopsis,in particular binocular stereopsis arisesfrom the
di®erencein the viewpoints of the two camerasthat view the scene. This processis
known astriangulation and is illustrated in Figure 2.1. In the caseof binocular stereo,

a sene point (point in the 3-D world space)is projected on the two image planes of
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the camerapair; theseprojected points are knows as image points. Given the certre of
projection of the two cameras,two rays are formed that go through the the certre of
projection of ead cameraand imagepoint of the respective camera. The location of the

scenepoint is at the intersection of the two rays.

Scenepoint, P

/ AN

Right Cerntre of
Projection, C,

Left Centre of
Projection, C

Figure 2.1: Given the projections of a scenepoint in both the left and right image, the
three-dimensionallocation of the scenepoint can be determinedby triangulation.

From a computational standpoint, a stereosystemmust solve two problems[?]. The
key to performing triangulation is to rst establish point correspndences,or in other
words, for ead point in oneimage, nd the point in the otherimagethat is a projection of
the samescenepoint if it exists. This task of solving for stereocorrespndenceis the rst
problem of stereoand becausdt involvessearding for matching points in the binocular
imagepair, it is often termed stereo matching The seart for correspnding points need
only be performed along a one-dimensionalline rather than a two-dimensionalseart
areaif the sterecimageshave beenrecti ed. The surety of nding the correspnding
point along the line is guararteed by the epipolar constraint which says that given an

image point p, its correspnding point p; in the other other imageis constrainedto lie
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alongthe epipolar line which is formed by the intersection of the plane formed by P; Cy;
and C, and the image plane, whereP is the scenepoint and C, and C, are the camera

certres of the left and right camerasasillustrated in Figure 2.2.

P .

CI Cr

Baseline, T

Figure 2.2: The epipolar constrain guararteesthe location of a correspnding image
point alongthe epipolar line in the image pair.

The simplest binocular stereosystemis one whoseoptical axesare parallel, vertical
axesare aligned and with eath camerahaving identical focal lengths. In sudc a con gu-
ration, the epipolar lines coincidewith the sanlines of the images,thus simplifying the
seartr. For a scenepoint P having correspnding image points p, at (u;v) and p, at
(u®Vv9 onein ead image of the pair, the vertical positions are the same,that is, v = v°
as shown in Figure 2.3. The di®erencen the horizontal locations of the correspnding

image points

d=u u (2.1)

is termed the binocular disparity, or simply the disparity. The horizontal locations, u

and u® are measuredrelative to the the respective image certres.
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epipolar line
- '_!'E()'a;'\}) """"""""""" Jﬁvﬂ__

Left image Right image

Figure 2.3: Epipolar constrairt in parallel cameracon guration. p, and p, are point
corresppndencesof the samescenepoint. p; and p; lie along the samescanline (same
vertical position).

Giventhe cameracalibration parameters,the depth of a point P in 3-D spacecan be
obtained using similar triangles as shavn in Figure 2.4. The depth z is calculation using

the equation

o|—

(2.2)

wheref is the focal length of the camera,and T =k C,;j C; kis the baselineof the stereo
system. The computation of this depth is the secondproblem of stereo, also known as
the problem of reconstruction. This is a more challengingproblem whenthe camerasare

in a generalposition.

2.1.1 Stereo Recti cation

The problem of nding correspndencein an imagepair taken from camerasin a general
position can be simpli ed by rectifying the image pair before proceedingto nd the
matches. Recti cation is the processbhy which the two imagestaken from camerasin
a general position are reprojected onto a common image plane that is parallel to the
baselineof the stereo-rig. This is illustrated in Figure 2.5. The recti ed imagescan be
thought of as acquired by a new stereo-rig, obtained by rotating the original cameras

around their optical certres.
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' (camera)

Figure 2.4: Given the stereorig calibration parametersand the disparity measure,the
depth, Z, of a scenepoint, P, can be determined. T is the baselineof the stereorig and
f is the focal length of the cameras.

Mathematically, the reprojection canbe descrited by a 3£ 3 projection or homagraphy
matrix H. The matrix H represers the transformation of coordinatesfrom the original

imageto the reprojected image as follows:
2 3 2 3
x° X
yo 7= HE y (2.3)
z° 1

The stereopair can then be recti ed by applying two appropriate homographiesH
and H, to the two images. H, and H, are computed from the position and orienta-
tion of the two camerasgiven that the stereo-rig has been calibrated and its intrinsic
and extrinsic parametersare known. Further information on this processis given in

Appendix A.
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~Simple setup

H, ( ;
Generalsetup

o c.

Figure 2.5: The simple stereogeometry can be derived from a generalsetup by repro-
jecting the two imagesonto a plane parallel to the baseline.

The actual recti cation is performed using badkward mapping by re-sampling the
original images. For eat pixel (x%y9 in the rectied image, the correspnding pixel
(x;y) in the original imageis computed using Hi 1. This badkward mapping produces
real-valued coordinates in the original image so the intensity value of ead pixel in the
recti ed image must be interpolated from pixels in this neighbourhood. One method of
obtaining the intensity valuesfor the recti ed image is through bilinear interpolation,

which computesthe intensity value from a neighbourhood of four pixels.

2.1.2 Stereo Matc hing

According to [?], stereomatching algorithms, in general,can be broken down into the

following four steps:
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1. matching cost computation: somecommon onesinclude squaed intensity di®er-
ena@s (SD), absoluteintensity di®erences (AD), normalised cross-correlation,and
binary matching costs basedon features such as edges. The Locally Weighted
Phase Correlation (LWPC) algorithm usedin this work is similar to normalised

cross-correlation;

2. cost (support) aggregation:the summing or averagingof the matching cost over a

supprt region, which is normally in the neighbourhood of the pixel;

3. disparity computation/ optimisation: refersto selectingthe bestdisparity estimate
basedon the aggregatedcostand in somecaseghe subsequenhimprovemert of the

estimate with respect to somecriteria; and

4. disparity re nemert: in certain situations, there might be a needto obtain disparity
estimate at sub-pixelaccuracyusing methods sud asiterativ e gradiert desceh or

“tting a curve to the matching costsat discretedisparity levels.

Speci ¢ algorithms may alter the sequenceof the steps,conbine steps, or skip someof
the computation altogether.

Stereo matching algorithms can be classedinto two categories;one that generate
sparsedisparity mapsand another that generatedensedisparity maps. Algorithms that
generatesparsedisparity maps rely on features sud as edgesor cornersfor matching
and this matching is commonly known as feature basal matching A detailed survey of
many sparsealgorithms is available in [?] and will not be discussedhere. Many vision
applicationsrequire densedisparity estimatesand we focuson this classof algorithms in
this work. Densedisparity estimatescanbe generatedrom a sparsemap by interpolation,
but this approad requiresseweral assumptionsabout the scenegeometry and is burdened
with ditculties. More important is the classof algorithms that generatedensedisparity

mapsdirectly without the needfor interpolation.
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Stereomatching algorithms that generatedensedisparity maps can further be clas-
si ed into local (window-based)or glotal depending on the optimization performed in
Step 3 of the above descriked steps. The computational emphasisof local methods is
put on matching cost computation and on the cost aggregationsteps. The optimisation
is a local \winner-tak e-all" optimization at eat pixel [?] limited to the externt of the
correlation window. Despitethe drawbad of only local optimization, the fact that these
algorithms use a local supprt area, commonly known as the correlation window means
they exhibit regular computational structures that allow for excient parallel implemen-
tation on hardware sut as DSPs, ASICs, and FPGAs. A number of local algorithms
have beenimplemerted on various typesof hardware and a survey of thesecan be found
in Section2.3.

The computational focus of global algorithms, on the other hand, is on the optimiza-
tion step. Thesealgorithms seekto optimise a global energy function consisting of a

\data term" and a \smoothnessterm",

E(d) = Edata(d) + ,E smootn (d): (2.4)

The data term, Egyaa(d), givesa measureof the the likenessbetweenthe input image
pair and the disparity function d. The smoothnessassumptionsmadeby the algorithm in
the viewed sceneare encaled in the smaothnessterm, Emooth (d). Global algorithms use
seeral di®eret methods to achieve minimisation of the energyfunction. Theseinclude
simulated annealing[?], relaxation labeling [?] and non-linear di®usionof support [?].
More recerly, algorithms basedon graph-cuts [?] have been dewloped, and represen
the state of the art for accuracy

It is worth noting that though global algorithms provide more accuratedensedispar-
ity measuremets comparedto local algorithms, they have much higher computational
costs, where the 2-D optimisation of (global equation) is often NP-hard [?], that ren-

der this classof algorithms unsuited to frame-rate applications. With current hardware
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technology, it is a challengeto evenimplemert local algorithms that usecomplexmatch-
ing techniques. It is the focus of this work to rst designan ezxcient architecture for

hardware implemertation of local algorithms.

2.1.3 Locally Weighted Phase Correlation

The systemimplemerted in this work is basedon the \Lo cal Weighted PhaseCorrelation”
(LWPC) algorithm [?], which estimatesdisparity at a setof pre-shiftsusinga multi-scale,
multi-orientation approad. A versionof this algorithm wasimplemerted in [?] but that
systemis limited to handling a maximum disparity of 20 pixelsdueto resourcdimitations

on the FPGA, and hasno input imagerecti cation.

The LWPC algorithm hasfour major steps. A three-scaleGaussianpyramid is rst
createdfrom the original images,sub-sampledat ead level by a factor of two horizon-
tally and vertically. Each level of the pyramid is decompsedinto three orientations by

applying quadrature-pair G2-H2 "lters , tuned to orientations 0%, +45°;andj 45°[?]. G2

is the secondderivative, if(—zzG(x; y; 1 %), of a Gaussianand H2 is the Hilbert transform
of G2. G2-H2 Tters of any orientation can be synthesisedas linear conmbination of a set

of \basis Tters"; three basis Iters for G2 and four for H2 are needed.

Correlation is then performed on ead Ttered pair of imagesat a set of pre-shifts.
The correlation scoredor a pair of imagesat ead of thesepre-shiftsis collectively known
asthe con dence measur function. The con dence measureis then summedacrossall
the scalesand orientations so that spurious peaksare attenuated while the true peaks
are re-inforced. The correlation results for the coarserscalesmust be interpolated to
have the sameresolution asthe original scalebeforeperforming the summation. Finally,
the peak must be located in the conbined con dence measurefunction for ead pixel.
This peakis the estimate of the disparity for the particular pixel. The algorithm can be

summarisedas follows:
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1. Create a Gaussianpyramid with total number of scalesS for both left and right
images. Apply spatially-oriented quadrature-pair Tters [?] to eath scaleof the
pyramid at F orientations. If K;(x) is the Tter impulseresponseof the j th orien-
tation, then we can write the complex-\alued output of the corvolution of K; (x)

with ead scaleof the left and right images,l(x) and I, (x), as

Oi(x)
O (x)

W(x)eM ™ = K (x)- 1;(x) and

Yo(x)eh 0 = Kj(x) - 1,(x)

in polar represemation, where¥x) = jO(x)j is the amplitude and A(x) = arg[O(x)]

is the phaseof the complexresponse.

2. For ead scaleand orientation, computelocal voting functions C; s(x; ¢) in awindow
certred at ¢, as

W(x) - [Oi(X)Or(x + ¢)]

g ; 2.5
W(x) - jOi(x)j? W(x) - jOr(x)j? 2

Cis(X;¢) = ¢

where W (x) is a smaothing, localized window and ¢, is the pre-shift of the right

‘Tter output.

3. Combine the voting functions C; s(X; ¢) over all oriertations, 1- j - F, andscales,
1- s- S, whereF isthe total number of orierntations, to getthe cumulative voting

function

X
V(x¢) = Cs(x¢):

is
4. For ead image position x, nd the ¢ value correspnding to the peakin the real

part of V(x; ¢) asan estimate for the true disparity.

The reasonfor basing our work on this algorithm is two-fold. First, the LWPC
algorithm is one of the more complexand recen local algorithms. The results obtained
using this algorithm have greater accuracythan simpler local algorithms sud as ones

basedon sum-of-squared-di®erencé€SSD) [?, ?, ?] or sum-of-absolute-di®erencdSAD)
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[?]. The secondis that a previous implemertation [?] of this algorithm exists, but is
limited to a maximum disparity of 20 pixels, which in the set-upof that systemmeansany
objects closerthan 2 metersfrom the camerawill not have accuratedisparity estimates.
It is our hope that by creating a hardware stereosystembasedon this algorithm without
signi cant loss of features, as comparedto its software version, and at the sametime
providing frame-rate performancewe can encouragecomputer scierists who dewelop
stereo, and in general, vision algorithms, to steer their work towards hardware based
algorithms. At the sametime, we hope that we can also encouragehardware designers
to break from a traditional approad of designingsomecommonarithmetic componerts

sothat more of the complexalgorithms have implemertations on hardware.

2.2 Recon gurable Systems

A recon gurable systemis a computing systemthat can be reprogrammedto perform
many di®eren tasks,oftento support future upgradesand enhancemets. Recon gurable
systemshave at their coresingleor multiple interconnectedFPGAs that act asthe main
processingunit of the system. FPGAs, by nature, are recon gurable and thus provide
this functionality to the system. In addition to the FPGA(S), a recon gurable system
may also provide various meansof supplying input to the system,suc asaudio or video
signals, and also the ability to capture the results of the system. The communication
with other systemsand peripheralsare through interfacessut asPeripheral Componert

Interconnect (PCI) bus, Universal Serial Bus (USB), or even network-based.

2.2.1 Field Programmable Gate Arra ys

An FPGA is an array of logic elements whose behaviour can be programmedby the
end-userto perform a wide variety of logical functions, and which can be dynamically

recon gured as requiremens change. FPGAs generally consist of four major compo-
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nerts: 1) Logic blocks/elemens (LB/LE); 2) I/O blocks; 3) Logic interconnect; and
4) dedicated hardware circuitry. The logic blocks of an FPGA can be con gured to
implement basic combinatorial logic (AND, OR, NOR, etc gates) or more complex se-
guertial logic functions sud as a microprocessor. The logic interconnectin an FPGA
consistsof wire segmets of varying lengths which can be interconnectedvia electrically
programmable switches. The density of logic blocks usedin an FPGA dependson the
length and number of wire segmets usedfor routing.

The Altera Stratix S80 device used in this work contains a two-dimensional row-
and column-basedarchitecture to implemert customlogic. The smallestunit of logic in
the Stratix deviceis called a Logic Elemert (LE). Each LE cortains a four-input LUT,
which is a function generatorthat can implemert any binary-valued function of four
binary variables. In addition, ead LE cortains a programmableregisterand carry chain
with carry selectcapability to facilitate fast implemertation of arithmetic componerts.
The architecture of the Stratix LE is showvn in Figure 2.6. A set of 10 LEs make up a
Logic Array Block (LAB) [7?].

LAB Carry-In X
LUT Chain
Carry-In0 P Routing to
Carry-Inl ﬁ l Next LE

SET Register Chain
— > D Q | - Output
> Look-up Table Carry | | >
—p (LUT) Chain
— P
CLR

Figure 2.6: Simpli ed LUT architecture of Stratix chip.

Most modern FPGAs also have various dedicated circuitry in addition to the pro-
grammablelogic. Thesecomein the form of high-speedand high-bandwidth embedded
memory, dedicated DSP blocks, Phase-Laked Loops (PLLs) for generating multiple
clocks, and even generalpurposeprocessors.The FPGA we are usingin our system,the

Altera Stratix S80,comeswith three di®erem memory block sizes;512bits, 4 Kbits, and
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512Kbits for a maximum of 7 Mbits of embeddedmemory and 22 DSP blocks consisting
of multipliers, adders,subtractors, accunulators, and pipelineregisters. Figure 2.7 shavs

an overview of the Altera Stratix S80chip [?].

Logic Array |~ DSP Blocks
Blocks
MegaRAM™

Blocks
Phase-Locked

Loops \
i n

-~ 110 Elements

M512 RAM
Blocks

Figure 2.7: Advancedfeaturesof the Altera Stratix FPGA [?].

The combination of memory and DSP blocks make the Stratix family of FPGAs
ideal for image processingapplications as they can exciently implemert many com-
mon image processingtasks suc as nite impulseresponse(FIR) Tters, discretecosine
transform (DCT), colour spacecornversion(CSC), and MPEG-related operations among
others. Eadch DSP block, illustrated in Figure 2.8, is optimised to interfacewith the spe-
cialised memory structures in Stratix devicesfor memory-intensive and high-precision
DSP applications. Each DSP block canimplemert four 18 £ 18-bit signedor unsigned
multiplications using dedicatedmuiltiplier circuitry. The blocks canalsobe con guredto
support eight 9£ 9-bit multiplication or one 36£ 36-bit multiplication. In addition, the
adder/subtractor/accumulator unit can switch betweenadder and subtractor function-
ality, acting as a 9-bit, 18-bit, or a 36-bit unit as necessary In the accunulator mode,
the unit acts asa 52-bit accunulator that can be usedto implemert operations sud as

convolutions.
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Memory & DSP Blocks Placed
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Figure 2.8: DSP Block architecture of Altera Stratix S80FPGA [?].

2.2.2 FPGA Design Options

FPGA designershave seeral options for implemerting algorithms on the device. The
circuitry can be designedby connecting logic gatesto generatethe desired output, a
technigue known as gate-leveldesign Gate-lewel designsresult in optimised designs,but
the learning curve is consideredprohibitory for most engineers,and these designsalso
su®erfrom portability issuesacrossFPGA architectures. A more common approad is
to designat a higher level using Hardware Description Languages(HDLs). HDLs can
exciently describethe structure and behaviour of digital logic designsfor creating ASICs
or implemertation on FPGAs.

HDLs provide support for describingconcurren ewven to take advantage of FPGAs'
inherert ability to perform multiple operations concurrerily. This feature di®ereriates
HDLs from other high-level languageswhich are primarily intended for software design.
HDLs also support inclusion of technology-spgeci ¢ modules, which come in the form
of coresfrom FPGA or third-party vendors,for most excient synthesisto FPGAs. IP
(intellectual property) coresare generallyparameterisableo suit the user'sdesignand are
often designedto provide optimised performanceon a particular deviceor architecture.
Thesecoresallow IP to be easilydistributed and help in speeding-upthe designprocess.

A number of HDLs currently exist, someof which are proprietary, but two of the most

widely usedare Verilog HDL, or simply Verilog, and VHSIC (Very High Speedintegrated
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Circuit) HDL, or simply VHDL. Verilog, a former proprietary language,was originally
intended as a simulation language. It has since beenupdated to be usedin syrnthesis
of hardware designsand made into an open standard. VHDL, an open IEEE standard,
‘rst appearedin 1987 as IEEE standard 1076-87. VHDL is intended to support the
design,veri cation, synthesis, and testing of hardware designs.A secondupdate, IEEE
1076-93,cameout in 1993,and it is currently being consideredfor a third update. The
third update hasa number of featuresspeci cally suited for implemertation of arithmetic
algorithms. Theseinclude explicit support for variable bit-width °oating and xed point
operations, which helpsa designermanagetheseoperationsin the designbetter.

The choiceof which languageto useis arbitrary and dependssolelyon the designer's
familiarity with the language.Geographically Verilog is more popular on the west-coast
of North America, whereasVHDL is the preferredlanguageon the east-coastof North
America and in Europe. The languagechosenin this work is VHDL and the designis

fully compliart with the IEEE standard for VHDL.

2.2.3 Design Approac h

A successfularge-scalehardware designrequires extensive simulation and veri cation
beforea designercan validate the circuit. Designingarithmetic componerts in hardware
often requiresthat the data be corverted to xed-point format becausea °oating-point
version of the algorithm may not 't on the device. Implemertation of °oating-point
arithmetic on hardware takesup a lot more logic resourcesghan xed-point operations.
Howeer, there is a trade-o®betweenthe accuracyof the systemand hardware resource
usage: greater accuracy requires larger bit represetation and therefore more logic re-
sourceson the device. In addition, the concurrert nature of hardware designmeansthat
the designermust alsomake surethat the data-°ow in a pipelined designis syndironised
with the clock-cycle it is intended for. This meansthat validation must be performed

both at bit-true and cycle-true levels.
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MATLAB wasusedextensiwely to facilitate the smooth °ow of designand veri cation
of bit-true results. Modi cations and extensionsto the LWPC algorithm were tested in
MATLAB rst becausat is optimised for matrix operationsand providesa platform for
a fast implemertation. The designapproad is shavn in Figure 2.9. The gure shows
the interaction betweenthe hardware and software phasesof the designprocess. The
software phaseis on the left side and the hardware phaseis on the right side of the

diagram. The veri cation and validation phasesare shown in the middle of the diagram.

Algorithm Do Error Lo Create Design
Development Do e A A 4u 18]S
N . | . .
(MATLAB) - w L
. . | .
N MATLAB / _ Image Design Simulation ! VHDL
Y VHDL _ Data File (ModelSim) ! Code '
Comparison [ :
Hardware 1 Design
Emulation L : Synthesis and
(MATLAB) . | Testimage } Place & Route
. | Result |
- | Matrix e Bwor 1% Bit-stream
Y o , o v
MATLAB MATLAB / Verification on Download
Processing 1 .| Hardware mage Device / - L bit-stream
Lo Comparison | Data File | SignalTap Lo to Device

Figure 2.9: Hardware designapproad taken in this work.

Once a satisfactory algorithm was deweloped, a \hardw are emulation” version of the
algorithm wascodedin MATLAB to producebit-true resultsfor all componerts alongthe
data-path. While a matrix-manipulation software program and a hardware implemerta-
tion are fundamenally di®eren, they should produce the exact sameresults, provided
that careis taken in the hardware design. After completing the emulation version of
the algorithm in MATLAB, the hardware designwas createdcomponert by component.
Each component is tested for functionality and cycle-true results using the ModelSim

simulator tool. Bit-true resultsare chedked by importing the resultsfrom ModelSiminto
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MATLAB and comparingwith the results generatedfrom the enmulation version. When
all componerts requiredfor a module have beencompleted,the module is synthesisedand
a bit-stream is generated. The bit-stream is then downloadedonto the FPGA and the
designis veri ed by providing it with the sameinput image pairs that were usedfor the
emulation and ModelSim simulation versions. Any errors encourtered in the simulation
stagewere debuggedby analysingthe signal waveform in ModelSim. Similarly, discrep-
anciesfound in the hardware were debuggedusing the SignalTap on-chip logic-analyser
from Altera Corporation. The designwas createdand veri ed module by module, which

werethen all connectedto createthe completesystem.

2.2.4 Transmogri er-4 Recon gurable System

The Transmogri er-4 [?] is a general-purse recon gurable prototype board cortain-
ing four Altera Stratix SB0FPGAs. The board has speci ¢ featuresto support image
processingand computational vision algorithms; theseinclude dual-channel NTSC and
FireWire camerainterfaces,video encaler/decoder chip, and 2GB of DDR RAM con-
nectedto eatch FPGA. Eadch FPGA is also connectedto the other three FPGAs and an
interface is provided to communicate with the board over a network. This can be used

to sendcortrol signal or for debugging. The board is shavn in Figure 2.10.

Figure 2.10: Transmogri er-4 recon gurable computing board.
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2.3 Previous Work

A variety of recon gurablestereomadcineshave beenreported [?, ?, ?, ?, ?]. The PARTS
recon gurable computer [?] consistsof a 4 £ 4 array of mesh-connected-PGAs with a
maximum total number of about 35,0004-input LUTS. A stereosystemwasdewelopedon
PARTS hardware using the censustransform, which mainly consistsof bit-wise compar-
isonsand additions [?]. Kanadeet al.[?] describe a hybrid systemusing C40digital signal
processorgogetherwith programmablelogic devices(PLDs, similar to FPGAs) mounted
on boardsin a VME-bus badplane. The system,which the authors do not claim to be
recon gurable, implemerts a sum-of-absolute-di®erenceslong predetermined epipolar
geometryto generate5-bit disparity estimatesat frame-rate.

In Faugeraset al.[?], a 4 £ 4 matrix of small FPGAs is usedto perform the cross-
correlation of two 256£ 256imagesin 140ms. In Hou et al.[?], a combination of FPGA
and Digital Signal ProcessorgdDSPs) is usedto perform edge-basedtereovision. Their
approat usesFPGAs to perform low level tasks like edge detection and usesDSPs
for higher level integration tasks. In [?] a dewelopmen system basedon four Xilinx
XCV2000E devicesis usedto implemert a dense,multi-scale, multi-orientation, phase-
correlation basedstereosystemthat runs at 30 frames/second(fps).

It is worth noting that not all previous hardware approates have been basedon
recon gurable devices. In [?], a DSP-basedstereo system performing recti cation and
areacorrelation, called the SRI Small Vision Module, is descriked. ASIC-baseddesigns

are reported in [?, ?, ?] and in [?] commadlity graphicshardware is used.
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Design

In this chapter we rst analysea previous implemenrtation of the LWPC basedstereo
algorithm to point out the shortcomingsof the system. We then descrike the design
of pre- and post-processingmodules in Section 3.2 and Section 3.4 respectively that
improve the generalaccuracy of a stereoalgorithm. The highlight of this work is the
dewelopmen of a novel architecture for performing the phase-basedcorrelation which
can support a very large disparity range without a correspnding increasein the logic
resourcerequiremens as descriked in Section3.3. Finally, we shav an architecture of a

stereo-visionsystemthat incorporatesthesemodi cations in Section3.5.

3.1 Stereo Vision System on Transmogri er-3

The previous stereo system based on the LWPC algorithm was implemerted on the
Transmogri er-3 board. The TM-3 board has four Xilinx Virtex 2000E FPGAs. The
systemwas a straight forward implemertation of the LWPC algorithm descrikedin Sec-
tion 2.1.3. A high-lewvel architecture of this systemis shavn in Figure 3.1.

Two key stepstaken to successfullyimplemert the algorithm on the TM-3 board

were.

25
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Figure 3.1: High-lewvel architecture of LWPC based stereo-visionsystem on the TM-
3 board.

1. Modi cation of the voting function (Step 2 of the LWPC algorithm) to sharethe
normalisation operation and Gaussian Itering for all the pre-shifts¢. This reduces
the number of multiplication, division, and addition operationsby 65%sothat the
algorithm canbe implemerted in the FPGAs. A detailed look at this modi cation

and its e®ectds given in Appendix B.
2. Conversionof the computation from °oating-point to xed-point.

The above-meriioned modi cations are retained in the work. Even with thesemod-
i cations, the previous systemsupported a disparity range of only 20 pixels. Moreover,

the systemwas limited to using two orientations instead of the suggestedhree in [?].
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It is important to note that the LWPC algorithm asdescritedin [?] and its previous
hardware implemertation [?] compute the disparity of ead frame from scratch at every
frame. No attempt is madeto usethe fact that in most situations, the disparity of a pixel
will not changedrastically from one frame to the next when an image sequencas being
captured at 30 framesper second.In this work, we successfullyusethis information and
dewelop an architecture that is capableof handling very large disparities in the limited
resourcen the FPGA which we descrilkein Section3.3. Section3.2 descrikesthe design
of an imagerecti cation unit which improvesthe accuracyof the disparity results, and
Section3.4 discusseghe designof a post-processingunit to perform a consistencyched

in the disparity map.

3.2 Image Recti cation Mo dule

Recti cation of an imagerequiresthe synthesis of a new image through warping of the
original image. The theory of imagerecti cation is described previouslyin Section2.1.1.
In practice, image recti cation is achieved through an inverse mapping strategy|eac h
pair of integer pixel coordinatesin the recti ed imageis mappedto a pair of coordinates,
not necessarilyinteger, in the original image. The pixel value for the warped image can
be found through bilinear interpolation of the pixel valuesin the neighbourhood of the

mapped coordinates.

There are two main issuesto be aware of when implemerting image recti cation in
hardware. First, sincethis is an inversemapping process,we do not have prior infor-
mation on what exact input is required at eat time instance. This meanssomesort of
bu®eringof the input imageis required. In addition, bilinear interpolation requiresfour
input pixels for ead output pixel, whereasonly one pixel cantypically be read out at a
time from the bu®er. In order to keepup with the rate of incoming pixels one solution

would be to store four copiesof the incoming pixel streamin separatebu®ers.This allows
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all four pixels, onefrom ead of the bu®ers,to be read at the sametime. The incoming
pixel rate for our systemis about 13.5 MHz which is signi cantly lower than the full
potertial of the Stratix S80FPGA. This gives us another option to achieve real-time
performance;by designinga multi-clock system. In a multi-clo ck design,ead hardware
module is clocked by one of the two or more clocks usedin the systemwhich makesit
possibleto achieve a high-performancedesign. In this work, the imagerecti cation unit
is designedto run on a clock that is setto at leastfour times the frequencyof the camera
clock, sothat the four pixels neededfor bilinear interpolation can be read and processed
in the time it takesfor a single new pixel to arrive from the camera.

The secondissueis excient implemertation of the inversewarping operation to com-
pute the sourcepixel coordinate in the original image. The inversewarping operation
(Equation 2.3) requiresa matrix multiplication and two scalardivision operationsto con-
form to homogeneousoordinates and is expensive to implemert in hardware. Instead,
we have modeled this with a second-orderpolynomial which approximates the inverse

homograpty matrix asfollows:

02

0 0 00 0
X = @t aX +ay +aX"+ aXy + ay

b+ bix”+ by’ + bsxZ + hyxy’ + by ® ; (3.1)

<
I

wherex andy are real-valued sourceimage coordinates and x° and y° are integer-\alued
coordinates of the recti ed image. The coezcients a; and b are computed o2ine.

The integer parts of x and y are used as the index of the sourcepixel for bilinear
interpolation. The fractional parts are usedas weights for bilinear interpolation. The
valuesfor the image coordinates, x and y, can be obtained by one of the following two

approades:

1. Look-Up Table- The imagecoordinatescan be calculatedin advane by evaluating

the polynomials and storing the results in look-up tables which can be referenced
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at run-time. Only one bilinear interpolation for eat pixel needsto be carried out

at run-time.

2. Real Time Computation - The image coordinates are computed by evaluating the
polynomials at run-time and then bilinear interpolation is performedto determine

the intensity of eat pixel.

For an imagethat is 640 pixels wide, at least 10 bits are neededto index these pixels.
The fractional part is represemed by 6 bits bringing the total to a 16-bit represetation.
The Look-Up Table approad would require 600 KB of memory for storing eat of the
four coordinates for a total of 2400KB to rectify both the left and right images. The
Stratix SB0FPGA has9 blocks of 64 KB of on-chip memory for a total of 576 KB. This
on-chip memory is insuzcient for the sizeof this problem. The o®-tip memory on the
TM-4 board canbe usedbut it would requirethe designof a cate on the FPGA because
it is not possibleto read a value from the o®-d&ip memory in a single clock cycle. In
comparison,real-time computation of the polynomial requires 13 multiplication and 10
addition operations. We have chosento compute thesecoordinatesin real-time.

A xed-point represetation is employed for computing Equation 3.1. Figure 3.2 (a)
shows the expected orientation of the warped image. The warped image s represeted
by the gray area. Figure 3.2 (b), (c), (d), and (e) shawv the resulting warped orientations
obtained when the fractional part of the coexcients in Equation 3.1 is represeted by
4, 8, 16, and 32 bits respectively. The root-mean-squareerror (RMSE) basedon the
resulting orientation is shavn in Figure 3.3. There is no signi cant improvemern in the
RMSE whenrepreseting the coexcients with more than 16 bits sowe chosethis asthe
precisionfor the the coetcients @ and b.

The architecture of the Image Recti cation Unit is illustrated in Figure 3.4. A
stereo-setupwith a worst-casevertical misalignmen of 16 sanlines betweenthe left and
right image is assumed,which requires bu®ering of 32 sanlines of both the left and

right images. The Image Bu®er stores the incoming pixels and the Controller keeps
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(a)
(b) (©)
(d) (e)
Figure 3.2: Comparison of the expected warped image (a) with the resulting warped

imageswhencomputing Equation 3.1with 4 (b), 8(c), 16(d), and 32 (e) bits of precision
for coexcients a; and by.

track of the latest sourceline that arrivesinto the bu®er. If all the lines required for
the next output line are available, the Controller generatesthe output indicesfor pixels
in the scanline. The AddressGeneiator then computesthe sourceaddressfor the four
neighbouring pixels requiredfor bilinear interpolation for eat pixel in the scanline. The
integer part of the sourceaddressis usedto read out the required pixels from the bu®er.
The fractional parts of the sourceaddressare usedas weights for bilinear interpolation.
A warped imageis not in generalcortained in the sameregion of the image plane asthe
original image resulting in some\missing" pixels typically at the edgesof the warped

image. A 1-bit °ag is generatedto indicate thesemissingor invalid pixels.
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Figure 3.3: Root-mean-squareerror valuesfor the warped image orientations computed
with various precisionbits for the coexcients a and hy.
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Figure 3.4: Architecture of Image Recti cation Unit.
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Figure 3.5: There is a direct relationship between the epipolar seart band and the
expecteddepth of objects in a scenethat can be recovered.

3.3 Expanding the Disparit y Range

A simpleand straightforward solution to expandingthe disparity rangecanbe achieved by
increasingthe sizeof the correlationwindow to correlatepixelsat greaterdisparities. This
increaseghe sizeof the epilar search band, which is the areaalongthe image scanline
within which a correspnding match is seartiedfor. Thereis adirect relationship between
the seard band range and the depth in a scenethat can be recovered, asillustrated in
Figure 3.5. Howewer, consideringthat the resourceusageon the FPGAs is proportional
to the sizeof the correlation window, it is not an optimal solution because nite device
resourcegposea restriction.
In addition, in [?] it is shown that the probability of an incorrect stereomatch P, ot

is given by :

Pyo@l = pa+ PP+ PS (3.2)
where P2 is the probability of mismatcing a pair of featureswhen neither feature has

its correct match detectedin the other image, PP is the probability of mismatch when

one feature has had its correct match detectedand P, is the probability of mismatch
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when both featureshave had their correct matchesfound in the other image. P2, P2
and P, are eat proportional to the mean number of candidate matches,and mutually
exclusive, and thus P %@ is proportional to the epipolar seart area consideredduring

matching.

3.3.1 The Tracking Correlation Windo w

We saw above that increasingthe sizeof the correlation window is not a viable solution
from either an algorithmic point of view or a hardware implemertation point of view.
Howewer, in many practical situations, sud aswhenan object getscloserto the cameras,
it becomesmecessaryto be able to handle a larger disparity range.

Fortunately, the input to real-time stereo-visionsystemsis from camerasthat stream
imagesat a rate of 30 fps or higher. At this rate, a large amourt of temporal coherence
is expectedin most real-life image sequencesBy modeling and predicting the movemen
of pixelsin an image, we canrestrict the epipolar seart to a limited areaat a particular
time frame. The correlation window can shift accordingly along the epipolar line (which
for the caseof recti ed imagesis the sameasa sanline) and perform localisedcorrelation
rather than performing a blind seart over a much larger range, much of which has a
very low probability of having the match of interest.

Keepingthis in mind, we have modi ed the original LWPC algorithm to encapsulate
the correlation algorithm within a temporal loop. This changeis re°ected in Step 2 of

the LWPC algorithm initially mertioned in Section2.1.3asfollows:

2. For ead scaleand orientation, computelocal voting functions C; s(x; ¢) in awindow

certred at ¢. as

W(x) - [Ol(é)of (x+ &)l
W(X) - JOi(x)j? W(X) - jOr(x)j?

Cis(X¢) = 4 (3.3)

where W (x) is a smaothing, localizedwindow and ¢ is the pre-shift of the right

‘Tter output certred at the disparity of the pixel from the previousframe.
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This is implemerted asthe Primary Tracking Window (PTW) and its hardware im-
plemertation is discussedin Section3.3.3. The tracking algorithm is currertly a very
simple one;the window is certred at the estimateddisparity from the previousframe for
a given pixel. Sinceimagesare received at a rate of 30 framesper secondor higher, we
assumethat the disparity of a given pixel will not changedrastically from oneframe to
the next. This allows us to reducethe sizeof the correlation seard area, which results
in reducedhardware resourcesas well asa reducedprobability of mismatd assumingwe
are closeto the correct match.

In correlation-basedstereoalgorithms sud asthis onethe recoveredobject boundaries
tend to be located away from the real ones,a problem known as boundary over-reach
Boundary over-reat occurswhen the correlation window straddlesan object boundary
sothat part of the window is on an object at onedepth and part of it is on an object at
another depth. The systemin this work alsoexhibits this phenomenonput the shiftable
nature of the window can be usedto overcomethis problem in a future version of the

systemaswill be discussedorie®y in Section3.3.5.

3.3.2 System Initialisation

When propagating disparity estimatesbetweenframes, it is necessaryto considerthat
such algorithms su®erfrom the risk of getting stuck in a local minima (wrong matches)
[?], especially during the initial frames. This problem can be overcomeby performing

systeminitialisation using one of the following two methods:
1. Coarse-to- nestrategy.
2. Stochastic seart strategy.

The idea behind a coarse-to- ne strategy is to gradually increasethe resolution at
which correlation is performed. This performsthe initial exhaustive seart that is re-

quired to give a temporal stereoalgorithm a good seedpoint from which to start. Pro-
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cessingthe initial few framesat a much coarserscale(say 25% or 50% of their original
size) allows the correlation algorithm to seard a greater range of disparity in a given
time. The main advantage of using a coarse-to- ne strategy is that a valid disparity
map is generally available from the rst frame. This approad is ideal for a software
implemenrtation becausedt doesnot increasethe computational load. In a hardware im-
plemertation though, this approad is lessappealing becausét requiresdecisionmaking
regardingwhich scaleto useat a speci c time, though its potential usescanbe considered
for a future addition to the system. Furthermore, using results from only a particular
scalewould mean losing the essenceof the LWPC algorithm, which conbines results

acrossscalesfor improved accuracy This is discussedater in the section.

Stochastic seard appliesan exhaustive seart over a period of time. It normally takes
a few framesbefore completeinitialisation of the sceneunder considerationis achieved.
A secondcorrelation window, in addition to the primary window that performstemporal
correlation, is requiredto perform this seard. In a software implemenrtation, this means
an increasein the computational load. In hardware, the secondarywindow can operate
in parallel with the primary window sothat there is no increasein the computation time.
We choseto employ this method becausethis secondarywindow can also be usedafter
the initialisation stageto help the systemrecover from mis-matdhesas discussedoelow.
This is an advantage over the coarse-to- nestrategy. A coarse-to- ne strategy would
require frequen reinitialisation and computation of the ertire scenceat coarserscaleto
recover from mis-matcheswhereasthe stochastic seard approad treats individual pixels
separatelyand is able to recover from a mis-matd without switching the computation

betweencoarseand ne scales.

In [?] it is claimed that a coarse-to- ne strategy is preferred over an initialisation
stage that usesa window to incremenally seart over a wider range, but from our

experimerts on real imagesequencesve have found that a secondarycorrelation window
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that performs disparity calculations at regularly spacedintervals in successig frames,

similar to the initialisation stageemployedin [?], givesgood results, aswill be shown.

Figure 3.6 shaws the results from the initialisation stagefor the sceneshown in Fig-
ure 3.6(a). Figure 3.6 (b) shaws the disparity map that the LWPC algorithm would
generateif it had no limitations on the maximum disparity. Figure 3.6 (c) to (g) show
the settling of the disparity map into the expecteddisparity of Figure 3.6(b). The Root
Mean SquareError (RMSE) betweenthe expecteddisparity map and the disparity map
generatedby our modi ed algorithm steadily decreasest ead progressie framesand

tendsto zeroat the fth frame for this particular scenceas shown in Figure 3.6 (h).

We call this secondcorrelation window the Secondary Roving Window (SRW). The
main advantage of using this approad is that the SRV also aids in recovery from a
mismatch after the initialisation stage. In situations where a new object erters the
scene,or a regionis dis-occluded,the SRW will pick up this new information, typically
within a few frames,and provide a disparity estimate with higher con dencevalue than
the PTW, which canthen latch on to this new estimate asillustrated in Figure 3.7. This

provides better results as well as much better utilisation of the hardware resources.

There is a trade-o®betweenthe stochastic seart areaand the time to recovery using
this approad. The further that the SRW hasto seard over, the greaternumber of frames
it would requireto recover shouldthe PTW be stuck at a wrong match. In Figure 3.8 we
shaw the di®erencan recovery time for the casesvhenthe secondarycorrelation window
is shifted up to a disparity of: i) 140 pixels and ii) 60 pixels. Figure 3.8 (a) shows
frame 11 for case(i); the results start to deteriorate asthe subject movesto the left and
pixels to the right of the subject are dis-occluded. The system completely recovers by
frame 15, Figure 3.8 (b). For case(ii), the resultsdeteriorate at frame 12, Figure 3.8 (c),
and are already recovered by frame 13, Figure 3.8 (d), though the results get noisier as

the maximum disparity of the systemincreases.When the maximum disparity expected
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Figure 3.6: The disparity map at successigtime instancesareshavnin (c) to (g) obtained
using our modi ed temporal algorithm. The expecteddisparity map is shovn in (b) and
our modi ed algorithm reades this expected disparity by the fth frame (g) for this
particular set-up. The error during the initialisation stage shavn in (d) corvergesto

Zero.
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Figure 3.8: The recovery time for the systemwith a maximum secondaryshift of 140
pixels is shovn in (a) and (b). This can be reducedby using a smaller maximum shift,
e.g. 60 pixelsasshown in (c) and (d). In the latter case,recovery occursin oneframe as
opposedto four.

is known in a particular environment, the roving distance of the SRV can be restricted
to minimise the recovery time and noisein the disparity map.

Furthermore, performing disparity calculationsat all three scales(12;4) and in three
orientations (j 45°, 0°, +459), the results of which are summedacrossscaleand orien-
tation, actsasa built-in error-correctionfeature of the LWPC algorithm. The expected
interval betweenfalsepeaksis appraximately the wavelengthof the Tters applied at eat
scale. Thus the false peaksat di®eren scalesoccur at di®eren disparities and summa-
tion over the scalesyields a prominent peak only at the true disparity [?] as shown in

Figure 3.9.
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Figure 3.9: LWPC tendsto cancelerroneousmatchesacrossscales|eaving only the true

match after voting. The top three rows shaw the voting function for three di®eren scales
at orientations of 45°, | 45°, and 0°. The fourth row shows the voting function summed
acrossthe scaledor ead orientation andthe nal summationacrossoriertations is shovn

in the fth row.

3.3.3 Comparison of the traditional and new architecture

The useof temporal information to seedthe correlation windows increaseshe epipolar
seart areawhile keepingthe probability of mismatdhesand the use of hardware logic
to a minimum. Nonethelessit is a challengingtask to implemert the shiftable window
correlation in hardware. FPGAs are well suited for processingdata in a serial-shift or
systolic data°ow fashion. The traditional textbook approad to designinga correlation

unit, one which was followed in the the stereo-systemon the TM-3 board, follow a
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Figure 3.10: Traditional architecture of the correlation unit with xed window.

serial-shift data’ow and this only allows for a xed-window correlation architecture.
This architecture, usedin [?], is illustrated in Figure 3.10. The correlation, W (Xx) -

[O(X)O7(x + ¢)], is performedby supplying the left imageinput of the unit with a new
pixel value every cycle and delaying the right imageinput by 1 to D cyclesfor eat of
the D correlation values. For D = 20, this results in a latency of 20 cyclesfor the rst

correlation result to appear, after which a new correlation value is generatedevery cycle.

In the traditional xed-window correlation architecture the maximum disparity is
equalto the actual number of voting function / correlation blocks used. The resource
usageis linearly proportional to the maximum disparity that the correlation unit can

support making it prohibitive to usein scenarioswith large disparities.
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Figure 3.11: Modi ed correlation unit with two shiftable windows.

To exciently implemert the shiftable window correlation architecture that was dis-
cussedpreviously, we needto take into accoun the resourcesavailable on the speci c
hardware we intend to use. In the modi ed correlation algorithm, the data no longer
°ows in a serial-shift fashion. We do not have a priori information on wherethe window
will be located at a particular time instancebut we can setthe maximum distance over
which the correlation might be performed, which we have setto 128for this work. This

requiresbu®eringof partial lines correspnding to the maximum seard range.

The correlation is carried out at three scalesfor both the PTW and SRN. We have
set the width of the correlation window to 9 pixels at the original scale,requiring nine
voting function units. Five voting function units at 50% scale(Scale2) and three voting
function units at 25% scale(Scale4) are required. We needto bu®ern copiesof one
input, wheren correspndsto the number of voting function units at ead scale,in order
to keepup with the rate of incoming pixels. High-bandwidth M4K memory blocks of the

Altera Stratix S80chip are usedto bu®ertheseincoming pixels.
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In our modi ed architecture (Figure 3.11), oneof the incoming data streamsis stored
in partial line bu®ers;the right input stream for a left-to-right correlation and the left
input streamfor a right-to-left correlation. A left-to-right correlation treats the left input
as the referenceand the right input is shifted to seard for the best match, and vice-
versafor a right-to-left correlation. The maximum disparity is determined by the size
of thesebu®erswhereasthe number of voting function units are xed; 9 for PTW and
9 for SRW. Once all the required pixels for the next correlation operation are available
in the bu®er,the cortroller generatesan addressto read out the required pixel for the
current correlation window. To minimize the resourceusageon the FPGA, the partial
line bu®ersare implemerted using true dual-port memoriessothat two pixel valuescan

beindependerily readfrom the bu®eread cycle,onefor eat of the correlation windows.

The SRW certres at a disparity of 9 for the rst frame, and shifts in incremens

of L = 9, the correlation window length, for the successig frames until it reades a
disparity value of 128, or someother user-sgeci ed maximum. At the next frame, the
window certres at O disparity, after which it circlesbad to being certred at 9 and the
cyclecortinues. The e®ectie range of disparity that our systemcan handleis 128 pixels
but this can easily be increasedto accommalate larger disparity. There is a tradeo®
between the time to recovery from a mismatch and the maximum disparity that the
system can handle, as discussedearlier. For a maximum disparity of 128 pixels with

incremerts of 9 pixels per frame for the SRW, the worst-casetime to recovery is 433

millisecondscorrespnding to a wait of 13 frames.

A comparison of the relative resourcerequiremerts for a traditional architecture
againstour modi ed architecture is shovn in Table3.1. Theseare calculatedfor perform-
ing the correlation in three orientations at three scales. The number of normalisation
units remainsthe samein both architectures. The number of voting function units, the
core of the correlation module, required for the modi ed architecture is actually less

than that required for a traditional architecture (102 v.s. 105) for a signi cantly larger
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# of Altera | On-chip 9-bit
Unit Blo cks LEs M4K DSP
RAM Elements
Normalisation 18(18) 29,070 - 72
Partial Row bu®ers 60 (0) - 120 -
Voting function 102 (105) | 21,726 - -
Controller 1(0) 1,000 - -
Av ailable 79,040 364 172
resouces on S80

Table 3.1: Resourceconsumption of modi ed Phase Correlation Unit on Altera S80
FPGA. The number of correspnding blocks required for the architecture described in
[?] are shawvn in parerthesesfor comparisonpurposes.

support of disparity (128 v.s. 20). In fact, the number of voting function units remains
the sameno matter what the maximum disparity is setto. This represeis a signi cant
savingsin resourceusageand opensup a wide variety of usesfor the modi ed correlation
architecture. Our modi ed architecture requiresa signi cant amourt of on-chip memory
for bu®eringand ways to achieve the sameor better disparity estimateswith reduced

on-chip memory usageare discussedn Section5.1.

3.3.4 Arc hitecture Limitations

The original LWPC algorithm usesa 5 £ 5 pixel 2-D Gaussianmask to compute the
voting function C(x; ¢) givenin Equation 3.3, but in this work C(x; ¢) is computedusing
a 1£ 5 pixel 1-D Gaussianmask. The accuracy of correlation basedstereo-mating
algorithms is inherertly dependent on the amourt of texture available in the image pair.

The useof a 1-D Gaussianmaskreducesthe texture information available for correlation
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Figure 3.12: Pixels wherethe disparity estimate using a 1-D Gaussianmask di®er from
the disparity estimate using a 2-D Gaussianmask are shavn in white.

asthe texture information in the vertical direction is ignored causingsomedegradation
in matching performance.

In our implemertation, the amourt of on-chip memory is not sutcient to bu®er
multiple incoming scanlinesneededfor a 2-D mask, asthe architecture requiresmultiple
copiesof ead line. The impact of the useof a 1-D maskis shavn in Figure 3.12for a
sampleframe. The white pixelsindicate wherethe disparity estimatesdi®erbetweenthe
useof of 1-D mask and a 2-D mask. Though most of these estimatesdi®er by a single
value of disparity (somedi®erby over 20 disparity values),the di®erencas compounded
when usedin a temporal algorithm sud as ours and we expect somedegradationin the
results. A di®erenceof onedisparity value per frame can causethe tracking window to go
o®-tradk over time. The architecture canbe modi ed in a future versionto accommalate

a 2-D Gaussianmask as discussedn Section5.1.

3.3.5 Flexibilit y of Modied Correlation Unit

A number of variations of the designcan be achieved without having to make any changes
to the correlation unit. Instead of the simple tracking algorithm that we are currently
usingfor the PTW, an algorithm basedon a constart-velocity motion model can be used

to achieve better tracking. The velocity estimatecan be obtained by taking the di®erence
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betweendisparitiesin the previoustwo frames,v; = d;; 1i d;; 2, wherev; is the predicted
disparity velocity for the currert frame. Similarly, the location of the secondarywindow
can be computed using a probabilistic likelihood estimate instead of the pre-determined
roving locations.

Other options include the possibility of concatenatingthe two correlation windows
after the initialisation stagesoasto support greatermovemern of objects from oneframe
to the next. The decisionof when to concatenatethe windows and when to usethem
individually in parallel can be madeby a simple court of the number of invalid disparity
estimatesafter the validation ched phase. This can be donefor the wholeimage,region
by region, or even for individual pixels. The issueof boundary overreat in correlation
basedalgorithms[?] discusseckarlierin Section3.3.1canalsobe solved by simply shifting
the correlation windows by § L=2, whereL is the length of the correlation window, so
that the window does not crossover an object boundary. All of these modi cations
require the implemertation of a post-processingstage that generatesthe appropriate
input parametersfor the correlation unit without having to make internal changesto the
correlation unit itself.

The useof the correlation unit is not limited to a stereo-system.lt can alsobe used
in other systemssud asobject recognitionusing template matching, for e.g, appearance
models for object recognition. The two correlation windows can be usedindependerily
to seard di®eren regionsof an image thereby speedingup the sear® processor they

can be combined to support a larger template.

3.4 Consistency Check Unit

Densestereodisparity algorithms basedon correlation suc asthe LWPC algorithm used
in this work generatea disparity value for every single pixel. When the two imagesare

taken from di®eren viewpoints there invariably are pixels that are visible in oneimage
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Figure 3.13: The two rows represen pixels along two epipolar linesof | ; and |, and the
arrows go from a point in one of the imagestowards the point in the other image that
maximisesthe correlation score. The match on the left is consisteh becausecorrelation
from I, to 1, and from |, to |, yields the samematch, unlike the matcheson the right
that are inconsisten.

but not in the other, a condition known as occlusion. The matching algorithm will still
attempt a best guessas an estimate for the disparity resulting in erroneousresults. We
have employed a medanism called a left-right, right-left (LR-RL) consistencycheck to
identify theseand other irregularities in the disparity estimates. This validation measure

is illustrated in Figure 3.13and can be de ned as follows:

Given a point Py in 14, let P, be the point of I, located on the epipolar line
correspnding to P; sothat an optimal correlation scoreis achieved. P; is the
referencepoint of correlation and the window that shifts along the epipolar line
is certred on P,. The match is valid if and only if the correlation scoreis also
maximisedwhen P; is the referencepoint of correlation and the window that shifts

alongthe epipolar line of I, correspndingto P, is certred on P;.

We implemert this ched by performing the correlation twice; namely left-to-right
(L-R) correlation where the left image is the referenceinput and a match is searted
for in the right image and right-to-left (R-L) correlation where the right image is now
the referenceinput. Both correlationsare performedin parallel and one row of disparity

estimatesfrom ead of the correlation units are bu®ered. The size of this bu®erneeds
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Figure 3.14: Architecture of ConsistencyChed Unit.

to correspnd to the maximum disparity that the systemis designedfor, which in our
caseis 128 pixels. The architecture of the Consistency Check Unit is illustrated
in Figure 3.14. A cortroller reads out the appropriate disparity value from the R-L
correlation basedon the disparity value of the L-R correlation. The values are then
cheded for consistencywhich is determinedby a threshold level. The threshold level for
our systemis setsothat a di®erencegreaterthan 2 pixels valuesin disparity is classi ed
as an invalid result, but this can be easily modi ed to a di®eren level. A 1-bit °ag is

generatedfor ead invalid disparity result.

3.5 Stereo-Vision system Arc hitecture

In the previous sections,we discussedhe designof pre- and post-processingblocks for
imagerecti cation and LR-RL consistencyched respectively that improve the overall ac-
curacy of the stereo-systermaswell asthe developmen of a novel correlation architecture

with shiftable windows. We now presett a stereo-systenmbasedon the LWPC algorithm
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that utilises thesedewelopmerts. Hardware designtechniquesfor implemerting common
signal and image processingtasks suc as ltering and implemerting a system across

multiple FPGAs are alsodiscussed.

The high level architecture of the proposedsystemis shown in Figure 3.15. It consists
of six major units: Video Interface unit, Image Recti cation unit, Scale-Oriemation
Decomposition unit, Phase-Correlationunit, Interpolation and Peak Detection unit, and

ConsistencyChed unit.

The Video Interface Unit receiwesvideo signalfrom a stereo-rigwith NTSC cam-
eras(Figure 3.16). NTSC camerasoutput 640£ 480imagesat 30 fps but the odd and
even eld of ead frame are captured with a time di®erenceof (1=60)" of a second.The
even eld consistsof even rows (rows 0,2,4,...) and the odd eld consistsof odd rows
(rows 1,3,5,...) of the image. This leadsto a seriousproblem of \jagged edges"when
2-D separable lters are applied to theseimages. To avoid this problem, we treat the
odd and even elds as separateframes,which resultsin the systemprocessingé40£ 240
imagesat 60 fps. The processingcapabilities and resourceusageof the systemin this
mode exactly mimic that of the systemif it were processinge40£ 480imagesat 30 fps.
The systemcan be easilyadaptedto process640£ 480imagesby designinga compatible

video interface unit that acceptsinput from a progressie-scancamera.

The acquired pixel data is sert to the Image Recti ¢ ation Unit asit arriveswithout
any bu®ering. This unit runs on the sameclock asthe camera,called the camema clock,
which can be di®eren and asyndironousto the systemclock that clocks the rest of the

modulesin the system.

The Image Recti cation Unit , described previouslyin Section3.2, warps both the
left and right input images. The output from this unit resenblesthat of a stereo-rigin
a simple set-up. Border pixels that are no longer part of the image due to warping as

discusseckarlier in Section3.2 are indicated by a 1-bit °ag.
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Figure 3.15: High-level architecture of the stereo-system
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Figure 3.16: The stereo-rigwith two NTSC cameras.The separationbetweenthe optical
certres of the two camerasis approximately 70mm.

A synchoniser circuit is designedto handle glitch-free transfer of data betweenthe
Video Interface Unit, which runs on the cameraclock, and the Image Recti cation Unit
that, like the rest of the system,runs on the systemclock. The systemclock is setat a
higher frequencythan the cameraclock. When transferring a single-bit signal, sud as
the cortrol signalsfrom the Video Interface Unit, from a slow clock to a fast clock, two-
levels of °ip-°op can be usedto syndironise the signal and avoid metastability issues.
The syndironiser is illustrated in Figure 3.17. The transfer of pixel values, which are
multi-bit signals known as a bus cannot be achieved with a two-stage °ip-°op. We
synchronisethe bus transfer by con guring the input imagebu®erto support dual-clock
operations. The write operation from the Video Interface Unit to the bu®eris performed
on the camena clock and the read operation from the bu®erto the Image Recti ¢ ation

Unit occurson the systemclock.

The Scale-Orien tation Decomp osition Unit rst builds a three-lewel Gaussian
Pyramid by passingthe incoming right and left imagesthrough low-pass Iters and sub-
sampling. The pyramids are then decompsedinto three orientations (-45°, 0°, +45°)
using G2/H2 steerable lters [?]. G2/H2 tering is implemerted using a set of sewen

basis Iters. By choosing a set of proper coetcients for the linear conmbination of the
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Figure 3.17: The syndironiser circuit usestwo-stagesof °ip-°op to syndironise 1-bit
signalsthat crossbetweenthe cameraclock and the systemclock.

basis lters, Tter output of any arbitrary orientation can be synthesised. Since G2/H2
‘Tters are X-Y separable,they require considerablyless hardware resourcesthan non-
separable Iters. The Tter output is reducedto a 16-bit represemation which is then

sert to the Phase-Correlationunit.

Filtering is a standard signal and image processingoperation. There are standard
architectures [?] to realise speci ¢ ltering operation in hardware, some of which we
descrike here. A 2-D, X-Y separable Tter can be realised by implemerting it astwo
separatel-D Tters. This reducesthe complexity of the Tter to O(N) whereasa regular
(unseparable)2-D TTtering operation has a complexity of O(N ?). When multiple Tters
needto be applied to an image, suc as the sewen basis lters to implemert G2/H2
“Ttering, maximum ezciency in hardware can be achieved by performing the vertical (Y)
‘Ttering rst followed by the horizontal (X) Ttering. This allows usto sharethe vertical
(Y) bu®eracrossall the Tters. The sizeof the Y bu®erfor an N-tap Y- lter is equal
to (N j 1) ¢W, whereW is the number of pixels in one scanline of the image. Only
N i 1 delay elemens are neededfor ead of the horizorntal Tters soit is considerably
lessexpensiwe to have separatebu®eringin the horizontal direction. The architecture of

2-D X-Y separablelter isillustrated in Figure 3.18.

Furthermore, all but one of the sewen basis lters are either symmetric or anti-
symmetric 7-tap nite impulse response (FIR) Tters. An FIR lter with co-excerts
Cy; Cy; i3 C; can be implemerted in hardware as illustrated in Figure 3.19 (a). This

requires 7 multipliers and 6 adders. Symmetric and anti-symmetric FIR Tters with
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Figure 3.18: Performing vertical Ttering rst allows sharing of the Y-bu®er for all the
sewen basis Iters resulting in considerableresourcesavings.

coetxcents C; = 8C7, C, = 8§C4 and C3 = 8 C5 can be implemerted as showvn in Fig-
ure 3.19(b) which reducesthe number of multipliers required from 7 to 4. The number

of addersremain the same.

The Phase-Correlation Unit computesthe real part of the voting function C;.s(X; ¢)
asmertioned in Eq. 3.3forall1- s- S,1:- j - F,Dnn * ¢+ Dmax, WhereS is
the total number of scalesF is the total number of orientations, and D is the disparity
range of the correlation window. The epipolar seart areafor correlation is nine pixels
wide for scalel, v e pixels wide for scale2, and three pixels wide for scale4 at any time

instance.

The Interp olation/P eak-Detection Unit interpolatesthe voting function results,
Ci.2(x; ¢) and Cj.a(x; ¢), from the two coarserscales,in both x and ¢ domains sud
that they can be combined with the results from the nest scale,C;.1(x; ¢). Quadratic

interpolation is performedin the ¢ domain and constart interpolation in the x domain.
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Figure 3.19: (a) Regular architecture of a 7-tap FIR Tter. The number of multiplier
required can be reducedfor symmetric and anti-symmetric FIR Tters using the archi-
tecture shown in (b).

The interpolated voting functions are then combined acrossthe scalesand orientations
to producethe overall voting function C(x; ¢). The peakin the voting function is then
detectedfor ead pixel asthe maximum value of C(x; ¢).

The Consistency Check Unit receivesthe estimated disparity results from both
left-right and right-left correlations and performs a validity ched on the results. The
disparity valueis acceptedasvalid if the resultsfrom the two correlation windows do not
di®er by more than two pixels. The cheded disparity valuesare then sert badck to the
video interface unit to be displayed on a monitor or otherwisemade available as output.

The rejecteddisparity estimatesare assigneda special °ag for display purposes.

3.5.1 Stereo-vision system on Transmogri er-4

The stereo-visionsystemdescribedis too largeto beimplemerted on a singleFPGA. The

systemis partitioned acrossfour FPGAs on the TM-4 board asillustrated in Figure 3.20.
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Figure 3.20: Partitioning of the algorithm and data transfer on the TM-4 board.
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The partitioning of the algorithm is dependen on the resourcesavailable on ead FPGA,

the comnmunication bandwidth between FPGAs, and external peripherals support on

eahh FPGA. FPGA #0 contains the Video Input / Output, Image Recti c ation, and

ConsistencyCheck units. FPGA #1 cortains the Sale/Orientation Decomposition Unit

and the Normalisation module of the Phase-Corelation Unit. The remaining modulesof

the Phase-Corelation Unit, Interpolation, and Peak Detection modulesare implemerted

on FPGA #2 that outputs a disparity map with the left image as the referenceimage.

FPGA #3 is resened to perform the sameoperations as FPGA #2 but with the right

image as the reference. The disparity valuesfrom ead of these would be cheded for

consistencyon FPGA #0. Note that at the time of this work, the TM-4 board still has

somebugs rendering FPGA #3 unusable. The complete system has been extensiwely

simulated with real video sequencesThe major units have alsobeentested on the TM-

4 board and systemintegration is underway. Simulation results are showvn in Chapter 4.
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Figure 3.21: The data to be transferedis time multiplexed on the sendingFPGA and
de-nultiplexed on the receivingFPGA, allowing large amourts of data to be transferred
on a limited width data bus.

FPGA #1 is connectedio FPGA #2 and FPGA #3 with a busthat is approximately
100-bits wide, but the number of bits that needto be transferred betweenthese FPGAs
is much larger. Eight bits are retained after normalisation for the real and imaginary
componerts of the phaseat ead orientation for ead scale. A total of 288 bits, 16 bits
for ead of the three orientations (j 45°; 0°; +45°) at ead scale(1,2,4) for both the left
and right images,needto be transferred betweenthe FPGAs. We use Time Division

Multiplexing to handle this transfer asillustrated in Figure 3.21.

3.6 Summary

Many vision algorithms are computationally expensive and require specialisedhardware
to run at frame-rate. The designof hardware systemsfor theseapplications require more
than simply porting the software versionof the algorithm to hardware due to the limited
logic resourceson hardware devices. In this chapter we saw that a traditional approadh
to implemerting the correlation unit is not the most excient solution for a hardware
realisation of the LWPC stereoalgorithm. A novel architecture for the correlation unit

with shiftable correlation windows wasdeweloped in this work to exploit the temporal co-
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herencepresen in real-life sequencesThe architecture usestwo correlation windows, one
to perform localisedcorrelation in an areaof the image where a correspnding match is
expectedby tracking disparitiesin the time domain, and the other to perform a stochas-
tic seart over a wider seart band over time. The maximum disparity can easily be
increasedor decreasedby setting the maximum limit for the roving window without

any changesin the logic resourceusageexceptan appropriate amourt of memory usage
correspnding to the number of pixels that needto be bu®ered.

In addition, an image recti cation unit was designedto warp the incoming stereo
imagessothat the epipolar linesin the imagepair are horizontal and aligned, to improve
the accuracyof the disparity estimates. The designof a consistencyched unit is also
discussed.This consistencyched invalidateserroneoudlisparity estimatesby performing
consistencycheds on the left-right and right-left disparity estimates. Finally, a complete
architecture of the LWPC-basedvision systemon the TM-4 board was preserted and
designtechniques and architectures usedto implemert this systemwere discussed. In
Chapter 4, we comparethe performanceof our systemto othersin the literature and

presern results from our system.
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Results

4.1 System Performance

The stereosystempreserted in this work performsmulti-scale, multi-orientation disparity
estimation up to 128 pixels using roughly the sameamount of hardware resourcesasthe
systemin [?] that is capableof handling disparities of only 20 pixels. A densedisparity
map is produced at the rate of 60 fps for an image size of 240£ 640 pixels (which is
equivalert to 480£ 640 pixels at 30 fps).

A commonmetric to measurethe performanceof a stereo-systemn terms of through-

put is the Points £ Disparity per Second(PDS) de ned as follows:

£mE D
PDS = % (4.1)

wheren £ m is the imagesize,D is the rangeof disparities evaluatedand T is the time it
takesto evaluate the disparities. It must be noted that the PDS metric doesnot take into
accoun algorithm complexity, or accuracyof the results, but rather is a measureof all
possibledisparity valuesthat are calculated by the algorithm in a speci ed time frame.
For our system,we useD = 18in the above equationbecausesighteen unique disparities

are computedin ead frame; nine disparity valuesare computedby the primary window
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T PDS
System neEm D | (msec) | (E£10°) algorithm platform
INRIA 256x 256 | 32 280 7.5 Intensity PeRLe-1board
[7] (23 Xilinx
Correlation XC3090FPGAs
PARTS | 240x 320 | 24 23.8 77 Census 16 Xilinx
[7] 4025FPGAs
CcMU 200x 200 | 30 33 36 sum of absolute C40DSP +
[?] di®erence real-time
processor
UofT- 256x 360 | 20 33 55 LWPC TM-3A board
TM3 [?] (4 Xilinx Virtex
(Phase-based) | 2000EFPGAS)
Our 240x 640 | 128 | 16.5 165 Temporal TM-4 board
system | (480 x 640) (33) LWPC (4 Altera Stratix
S80FPGAS)
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Table 4.1: Comparisonof various reported real-time stereovision systemperformance.

and nine by the secondarywindow. The system designedin this work is capable of

achieving a performanceof over 330 million PDS when both the left-right and right-left

correlation units are implemerted, which is considerably greater than the any of the

others listed [?, ?] someof which are listed in Table 4.1. Even with single directional

correlation the systemhasa performanceof 165 million PDS.

Comparedto the other systemsin Table 4.1, our systemis capableof handling the

largest disparity range without a similar increasein the resourceusageover [?]. We

achievedthis by utilising the temporal coherencen real-life video sequenceand designing

a shiftable correlation window whereasthe previous systemin [?] usesa traditional

xed-window architecture for correlation. The systemdoesnot have a \hard limit" on
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the maximum disparity; this can be easily increasedby setting the maximum distance
for the SRW to a higher value. But, at the sametime, there is a trade-o® between
time to recovery from a mis-match and maximum disparity as discussedpreviously in
Section 3.3.2. The logic resourceusageof the Phase-Correlationmodule remains the
sameexceptan increasein the sizeof the partial-line bu®ers.A software implemertation
of this algorithm in MATLAB requiresover 25 minutesto generatethe disparity map for
a pair of imageson a LINUX 3 GHz madine with 4 GB of memory This is becausehe
correlation windows do not follow a regular pattern soit is not possibleto take advantage
of MATLAB's matrix computation features. If multiple copiesof the data are storedlike
in the hardware version,there will be a speed-upin the computation time but it will still
not be closeto the frame-rate performanceof the hardware implemenrtation. A C/C++

implemertation may o®erspeed-upover the MATLAB implemertation, and though no

tests have beencarried out, eventhis is not expectedto match the hardware performance.

4.2 System Results

In this section,we presen results from various stagesin the system. First, we look at the
output from the imagerecti cation unit. Next, the output from the scale/ orientation
decomposition unit is presened. Finally, disparity estimatesbeforeand after performing
left-right consistencyched from a pre-capturedand pre-recti ed sequencere presened.
The imagesizeusedin this work is 240scanlinesin height and 640 pixelsin width. Eac
image s either the odd or even eld of a frame captured by an NTSC camera,but no
subsamplingis performedin the horizontal direction sothe imageappearto be stretched

horizortally.
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Figure 4.1: The original imagesfrom the left and right camerasare shavn in (a) and (b).
The recti ed left and right imagesobtained using a secondorder polynomial (c) and (d)
comparefavourably to the expectedrecti ed images(e) and (f).

4.2.1 Image Recti cation

The incoming imagesfrom the cameraare rst warped sothat corresmpnding pixels in
the imagepair appear on the samescanline. The original left and right input imagesare
showvn in Figure 4.1 (a) and (b) respectively. The warped left and right cameraoutputs
from the hardware computed using a secondorder polynomial are shovn in Figure 4.1
(c) and (d). In Figure 4.1 (e) and (f), we showv the expected results obtained from a

software implemertation using a matrix inversetransformation.

The recti ed imagesobtained using a secondorder polynomial are very similar to the
expectedrecti ed images. The di®erencdn the resultsis negligibleat the top left of the

image (pixel coordinates (0,0)), but increaseswith increasingpixel co-ordinatesin the
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x- and y-axes. An error analysisof the warped image obtained using the secondorder
guadratic with "xed-point precisionwas shavn earlier in Section 3.2. The results can
be improved by computing the coexcients for the warping polynomial with the certre of
the image set as pixel coordinates (0; 0) and then normalising the pixel indices so that
the width of the image (pixels 1 to 640) and the height of the image(pixels 1 to 240)are
ead represeted between(j 1;1). The actual calibration of the cameraswas doneusing
[?], a freely available online calibration toolbox for MATLAB. We do not compensatefor
radial distortion currertly but the stereo-rigcanbe recalibratedto compensatefor radial
distortion. A secondorder quadratic suc asthe oneusedin this work to appraximate the
homograply is capableof compensatingfor radial distortion solong as pixel coordinate
(0; 0) is mapped to the calibrated optic certre of the camera. The stereo-rigwould also
have to be recalibrated if there is any disturbance to the stereo-rig setup that would
changethe position or orientation of one camerawith respect to the other. The new
co-excierts obtained from a recalibration can simply replacethe existing coexcients in
our systemand the VHDL recompiledwithout any needto modify the rest of the image

recti cation unit.

4.2.2 Scale and Orien tation Decomp osition

The next step in the LWPC stereo algorithm is to create a Gaussianpyramid of the
input image and apply steerable G2-H2 Tters to the image pyramid to obtain phase
information in the images. The Gaussianpyramid generatedby the scaledecompsition
block is shavn in Figure 4.2. The H2 Tter outputs at the original scale(Scalel) tuned
to j 45°, 0°, and +45° are shown in Figure 4.3.

4.2.3 Disparit y Results

The last two major componerts of stereosystemare the phase-correlationunit and the

peak-detectionunit that generateghe bestestimate of the disparity value for ead pixel.
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Figure 4.2: Output of the scaledecompsition block is a Gaussianpyramid at Scale4
(a), Scale2 (b) and Scalel (c).

This last unit is still undergoingintegration on the TM-4 board so we presen results

from a ModelSim simulation of the system.

A pre-recti ed captured sequences usedfor this simulation. Frames1, 7, and 15from
the sequenceaptured by the left camera,MDR-1, are shavn in Figure 4.4. The sequence
consistsof a personin the foregroundand poster boards serving as the badground in
the image. The personis standing still and the camerais moving from left to right as
well asslightly diagonally Another way to think of this is that the camerasare still and

the personis moving to the left.

Figure 4.5 shaws the disparity results using left-to-right correlation for the rst 15
frames of the sequence.The maximum disparity in this sequencds around 40 pixels.
The systemis currertly con gured sothat the SRV searhesfor a correspnding match
in the range of 5 to 13 pixel disparities during the rst frame, 14 to 22 pixel disparities
during the secondframe and soon. The initialisation stagefor this particular sequence

spansthe rst three frames,asillustrated in Figure 4.5 (a) to (c) and the systemsettles
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Figure 4.3: NormalisedH2 Tter output at j 45° (a), 0° (b) and +45° (c) on scalel image
of the Gaussianpyramid.

(@) (b) (c)

Figure 4.4: Frames1 (a), 4 (b), and 15 (c) from the left cameraof the MDR-1 pre-
captured stereosequence.
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Figure 4.5: Disparity mapsfor frames1 to 15 of the MDR-1 sequencausing left-to-right
correlation are shavn in (a) to (o) respectively.

into a steady state by frame 4 asillustrated in Figure 4.5(d). The PTW is then ableto

track the disparities over subsequen framesasillustrated in Figure 4.5 (e) to (0).

As the personmovesto the left, parts of the badkground becomedisoccludedto the
right of the person. Becausehere is no previousdisparity estimatefor thesedisoccluded
regions,they tend to have inaccurate disparity estimatesduring the rst frame that the
regionsbecomevisible asillustrated in Figure 4.5 (g). The algorithm recovers accurate

disparities for thesedisoccludedregionsover the courseof next few frameswith the help
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Figure 4.6: Disparity map of frames1 (a), 11 (b), and 15 (c) of the MDR-1 sequence
generatedfrom the goldenversionof the LWPC algorithm running on a Linux processor.

of the SRW as can be seenin Figure 4.5 (j). Another important obsenation is the level
of noisein the disparity estimate for di®eren frames of the sequence. The disparity
map for certain frames(for exampleframe (0)) has greateramourt of noisethan others
(for exampleframe (k)). This is becausewe usea 1-D 1 £ 5 pixel Gaussianmask for
computing the voting function in Equation 3.3 which can handle horizontal translation,
but sinceany depth discortinuity (in this caseintroducedby the small vertical motion
in the sequence)disrupts tracking, the quality of the disparity estimate su®ers. The
architecture can be modi ed to accommalate a 2-D Gaussianmask (such asa 3£ 3

pixels mask) to improve performance,as discussedater in Section5.1.

The disparity estimatesfrom the goldenversionis shovn in Figure 4.6 for comparison
purposes. The golden versionis a software (MATLAB) implemertation of the LWPC
algorithm asdescriked in [?] using °oating-point arithmetic. The goldenversionis con-
“gured to support the maximum disparity in the sceneunder considerationusing a single

xed correlation window at every frame.

4.2.4 Consistency Check Results

The last step that the systemperformsis a consistencyched of the disparity estimates.
This is usedto improve the accuracyof the systemby comparingthe disparity estimates
from the left-to-right correlation and right-to-left correlation and rejecting disparity es-

timates that di®erby more than 2 pixel values. The rejected pixels are set to black for



Chapter 4. Results 67

(@) (b)

(€) (d)

Figure 4.7: Binary map shawving valid matchesin white and rejecteddisparity estimates
in black for frame 2 (a) and frame 11 (b). (c) and (d) show the disparity mapsfor the
two frames. In (c) and (d), the black pixels do not actually have a disparity value of
zero, but are rather pixels for which no good disparity estimate exists.

display purposesand the accepteddisparities are assignedthe disparity estimate from

the left-right correlation.

A binary map obtained after rejecting invalid matches for frame 2 of the MDR-1
sequenceds shavn in Figure 4.7 (a). The \white" pixels represen pixels that passed
the left-right consistencyched and the \black" pixels represen pixels that failed the
consistencyched. Fewer pixels passthe consistencyched test during the initialisation
framesasexpected. The pixelsthat passthe consistencychedk belongmainly to the image
badground becausethey have a smaller disparity which are recovered early. Oncethe
system has settled into steady-statethe accuracyof the systemimproves as illustrated
in Figure 4.7 (b) for frame 11. The disparity maps for the two frames after rejecting
invalid disparity estimatesare shown in Figure 4.7 (c) and (d). The accepteddisparity

estimatesare assignedthe disparity valuesobtained from left-right correlation.
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4.2.5 Analysis of Disparit y Results

In this section, we analysethe performanceof our systemby comparing the disparity
estimatesobtained from our work with the disparity estimatesfrom the goldenversion.
Howewer, beforewe preser the analysis,it should be noted that the disparity estimates
after consistencyched are quite sparseas some of the estimatesare rejected due to
the noisein the results. In addition to the use of xed-point arithmetic as opposedto
°oating-point, our system computesthe voting function usinga 1 £ 5 pixel Gaussian
mask instead of a 2-D n £ n mask so we expect somedegradationin results as we had
earlier mertioned in Section3.3.4.

The consistencyched& phaseeliminateserroneouddisparity estimatesthat arearesult
of occlusionor lack of texture in the captured image. The occluded areasof the image
pair in Figure 4.7 (d), left edgeof the personand a vertical band areaat the left edgeof
the image, are rejected after consistencyched. Correlation basedstereo-matting have
an inherert limitation in that they are able to successfullyestimate disparities only in
regionswith texture. A 1-D mask for correlation sud asthe one we have usedin this
work doesnot integrate texture information in the vertical direction. This lack of texture
information resultsin the disparity estimatesof someof the badkground regionsas well
asregionsin the middle of the personto be rejected.

To get a quartitativ e senseof the accuracyof the disparity estimates,we look at two
key performanceareas:i) results of the left-right consistencytest, andii) accuracyof the
accepteddisparity estimatesin comparisonto the goldenversion.

Performing a left-right consistencyched is a standard method of validating disparity
estimates. Pixels or other image features whose disparity estimatesdo not di®er by
morethan a certain threshold betweenthe left-right correlation and right-left correlation
are treated as having accurate disparity estimates. Table 4.2 shaws the perceriage of
acceptedversusrejected pixels for the MDR-1 sequence.The total percenage of pixels

that passthe consistencytest for frames4 to 15 combined is just over half the pixels
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Frames Frames

Percentage of: 4to 15 | 10 to 12
Accepted 53% 62%
Rejected 47% 38%

Accepted with disparit y
di®erence - 10% 85% 85%

from golden version

Table 4.2: Percenage of disparities acceptedand rejecteddisparities after left-right con-
sistencyched. The last row shonsthe perceriage of acceptedpixelsthat have a di®erence
of 10%or lessin disparity value from the goldenversion.

in the image at 53%. This number increasesto 62% when only frames 10 to 12 are
consideredwhich have lessnoisein the disparity estimates. Frames 10 to 12 do not
have a signi cant vertical componert in scenemotion, hencethe horizortal matching
window is able to handlethe situation better. For pixelsthat passthe consistencyched,
appraximately 85% have disparity estimateswith a di®erenceof 10% or lessfrom the

goldenversiondisparity estimates.

A histogram provides a better senseof the performanceof the disparity estimates.
Figure 4.8 shows the histogram for the di®erencean disparity valuesbetweenthe system
in this work and the goldenversionfor (a) the acceptedpixels and (b) the rejectedpixels
for frames4 to 15 of the MDR-1 sequenceEighty- v e percer of the acceptedpixels have
a di®erenceof 10% or lessfrom the goldenversionand most of the remaining accepted
pixelsfall within 20%of the goldenversiondisparity estimates. The useof a 1-D Gaussian
mask explainsthe few acceptedpixels that have a greater di®erenceas comparedto the
goldenversion. The rejecteddisparity estimatestend to have much greater di®erenceas
comparedto the goldenversion. Similar obsenations are madefor the results of frames

10to 12, asshawn in Figure 4.9.
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Figure 4.8: Histogram of di®erencen disparity estimatesbetweenour systemand golden
version for (a) acceptedpixel and (b) rejected pixels. The valuesare computed using
results from frames4 to 15inclusive.
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Figure 4.9: Histogram of di®erencen disparity estimatesbetweenour systemand golden
version for (a) acceptedpixel and (b) rejected pixels. The valuesare computed using
results from frames10to 12 inclusive.
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2
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Figure 4.10: The ve5£ 5 pixel blocks usedto compute the disparity estimate error in
Table 4.3 are numbered and indicated by the arrow.

Blo ck 1 2 3 4 5

% error | 1.03| 1.80|1.90| 5.60| 6.73

Table 4.3: Perceriage of error as comparedto the golden version disparities for the
numbered 5 £ 5 blocks showing in Figure 4.10. The blocks are shown inside the white
circles.

The secondareaof analysisis to comparethe actual di®erencen disparity estimates
for a given pixel. The disparity estimatesobtained from the goldenversionare compared
to the disparity estimatesobtained from our temporal algorithm using xed-point arith-
metic. Table 4.3 shonsthe averageerror in percert of the disparity estimatesof ve5£ 5
pixel blocks. Theseblocks are shovn and numberedin Figure 4.10. Blocks 1, 2, and 3
are usedfrom frame 11 and blocks 4, and 5 from frame 15 to get a senseof the error in
frameswith various levels of noisein the results. Frame 15 has greater amourt of noise
presen in the disparity map ascomparedto the disparity map from Frame 11. The error
in disparity estimatesis between1% and 2% for frameswith lessnoiseand between5%
and 7% for noisier frames. This is comparableto the systemin [?] which reports errors

of between3% and 13%.
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4.3 Summary

In this chapter we rst comparedthe performanceof our systemwith other real-time
stereosystemsusing the PDS metric. Then the results of image recti cation, Gaussian
pyramid, and G2/H2 Ttering from the implemertation on the TM-4 board are shown.
Disparity estimatesand consistencyched results are provided from a ModelSim simu-
lation of the system. Finally, a detailed analysisof the disparity estimatespointing out
wherethe systemperformswell and whereit requiresimprovemerns is preserted.

In the next chapter, we discussways to to improve the accuracy of the system.
This includes a modi cation of the line bu®ersused in the phase-correlationunit to
accommalate a 3£ 3 Gaussianmask for computing the voting function as well as the

useof other post-processingoptions to improve the disparity estimates.
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Conclusions and Future Work

As discussedn Chapter 2, FPGAs areideal for many vision tasksasthey allow usto take
advantage of the inherert parallelism of vision algorithms. Howewer they have limited
resources.Though larger and more complex designscan be realised using deviceswith
greater resourcessuth as ASICs or even larger FPGAs, it may not be an ideal solution
due to higher costs. Also, many algorithms require deviceswith much greater resources
than currently available. It is a challengingtask to dewelop complexvision systemswith
theseresourceconstrairts, and this di®erertiates the designingof hardware-basedsystem
from software-basedsystems. We needto take advantage of the information presert in
the data to be processedo dewelop excient architectures for the systemat hand rather
than simply taking a software implemertation and \p orting" it to hardware.
Keepingtheseideasin mind, we have preserted in this work an FPGA-based,frame-

rate stereosystemwith the following saliert features:

1. Abilit y to handlevery large disparities using limited hardware resourcesy design-

ing a novel architecture for performing correlation in hardware.

2. Improved accuracyby including an imagerecti cation unit to pre-processthe im-

agesand a consistencyched unit to remove invalid disparity estimates.
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3. Capability to handle image sizesof 240£ 640 pixels at 60 framesper second.The
systemis also capableof handling 480£ 640imagesat 30 framesper secondif a

suitable video interfaceis available, as discussedater in Section5.1.

The system captures views of its surroundings using a stereo-rig and generatesdense
disparity maps. The results of the disparity map provide depth information and can be
usedto construct a 3D map of the viewed scene.This information is usefulin a variety of
vision tasks sud as object recognition, autonomousnavigation, and surveillanceamong
others.

The highlight of this work is the designof a correlation unit with shiftable correlation
windows. This a departure from the traditional xed window correlation architecture
that hardware designersare accustomedto, and we have not found a shiftable window
architecture in the preser literature. This allowsour designto usetemporal coherenceo
track disparities over time and perform localisedcorrelation. Our architecture is able to
support a disparity rangeof 128pixels with the sameamourt of hardware logic resources
for the correlation unit asthe systemin [?] which is limited to a disparity of 20 pixels.
The range of our system can easily be increasedbut there is a trade-o® between the
maximum disparity that the systemcan support and the recovery time from a mismatah.

In addition, the correlation unit can be con gured easily to accommalate various
correlation seart strategiesasdiscussedn Section3.3.5. The useof the correlation unit
is not limited to a stereo-visionsystem. The °exibilit y of the correlation windows means
that the unit canbe usedasa platform for correlation basedalgorithms that allow vision

researbersto implemert and experimert in hardware with minimal dewelopmert time.

5.1 Future Work

The LWPC algorithm usedin this work performs correlation in three orientations at

three scales,a task requiring signi cant resources. Though we have been successfuin
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deweloping an architecture for the correlation unit that handleslarge disparities with

limited logic resourcesfor the arithmetic operations, the operations were limited to a
1£ 5 correlation for this work. This hashad an impact on the accuracyof the disparity

estimatesby introducing noisein the results. The main limitation of our architecture is
that it needsto store multiple copiesof the input imagestream preverting the bu®ering
of multiple lines at a time that are neededfor correlation with an n £ n Gaussianmask,
sud as 3£ 3 or 5£ 5 pixel masks,due to the limited on-chip memory. The simplest
way to accommalate an n £ n Gaussianmask is to support smaller image sizesand
useonly two orientations asin [?] instead of the suggestedhree. With an image width

of 320 pixels and correlation using a 3 £ 3 mask, a total of 240 out of the 364 M4K

memory blocks are required to store multiple copiesof three rows at a time. For larger
image widths, the line bu®ersneedto be modi ed as shavn in Figure 5.1 sothat three
adjacen pixels from the samerow can be accessedn a single clock cycle. For a 3£ 3
mask, nine pixels, three adjacern pixelsfrom three rows, arerequiredfor ead correlation.
In addition the voting function needsto be computed at a maximum of nine locations
correspnding to the epipolar seart band at Scalel. This canbe adchieved by designing
a multi-rate system. The input stream arrivesat approximately 13.5MHz which means
the correlation unit in a multi-rate designwould have to run at 9 times that speedor
121.5MHz to maintain frame-rate. Only a singlecopy of three rows needsto be bu®ered
at a time using this modi cation. Each row requiressix M4K memory blocks at Scalel
and three M4K blocks eat at Scales2 and 4. A total of 216 out of 364 available M4K

blocks are required to store a singlecopy of three rows at three di®eren orientations for

both the left and right images.

Another possibility is to useo®-dip memoryto bu®erthe output of the Scale/Oriertation
Decomposition block and designan on-chip cade to rapidly accesghe required pixels.
The useof o®-thip memoryalsorequiresthe designof memory cortroller to interfacewith

the o®-dhip memory blocks. For a complex designsud as this, board-lewel simulation
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Figure 5.1: Modi ed bu®erto storethree rows of phaseinformation. This would eliminate
the needto store multiple copiesof the samerow whenusedin conjunction with a multi-
rate system.

models that include the interaction betweenthe FPGAs and o®-tip memorieswill be
neededfor a rapid designprocess.

Other possibilities for future work include:

2 Designof a de-interlacer module to eliminate the \jagged edges"issuewith NTSC
camerasso that the system can operate on the desiredimage size of 480£ 640
pixels. Alternativ ely, a compatible module to interfacewith FireWire camerascan
be designed. FireWire camerasprovide a progressie-scanoutput so the \jagged

edges"are not a concernwith the Tter sizesusedin this design.

2 |nstead of choosingthe maximum of the voting function asthe disparity estimate,
information cortained in the curvature of the peak can be usedto determine the
bestdisparity estimate. The curvature information canbe usedto di®eretiate two
peakswith the samemagnitude but di®eren levels of con dencein the estimate.
A narrow peakmay correspnd to greatercon dencein the disparity estimatethan

a broader peak.
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2 Dewelopmert of post-processingblocksto experimert with variouscorrelation strate-

giesas suggestedn Section3.3.5which are mertioned brie°y below:

{ Useof an elaborate tracking algorithm suc as one using a constart-velocity

model.

{ Computing location of SRV using a probabilistic likelihood estimate instead

of pre-determinedlocations.

{ On-the-°y decisionto concatenatethe two correlation windows after initiali-

sation stage.

{ Shifting the correlation windows so that they do not straddle object bound-

aries.

Finally, as pointed out in Chapter 2, global stereo-matting algorithms are funda-
mertally better in terms of accuracyand quality of results than local algorithms. The
implemertation of a hardware-basedstereo systemthat usesglobal matching needsto

be explored.



App endix A

Stereo Recti cation

In this appendix, we brie°y descrilke the mathematical background on perspective pro-

jection and the recti cation technique we usefor our stereosystem.

A.1 Camera model

Eadh camerain our stereo-rigis modeled, using the classicpinhole model, by its optical
certre C and its imageplaneR and a 4 £ 3 perspective projection matrix P.

Let w = [x y z]" be the coordinates of a 3-D world point W in the world reference
frame and let its projection onto the image plane, M, have the coordinates m = [uv]"
in the image plane. The mapping from 3-D coordinatesto 2-D coordinatesis a linear
transformation in homogeneousoordinates. This is a perspective projection and is given

(up to a scalefactor) by the matrix P asfollows:
m' Pw, (A1)

wherem = [uv 1]" andw = [x y z 1]" are the homogeneousoordinates of M and
W respectively. The camerais therefore modeled by this perspective projection matrix

(PPM) P, which canbe decompsedinto the product, P = A[R]t] usingQR factorisation.
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The matrix A dependsonly on the intrinsic parametersof the cameraand has the

form:

2 3
fx ° Uo
0O 0 1

wheref, andf, arethe focal length of the camerain the horizortal and vertical directions
respectively, (uo; vo) are the coordinates of the principal point, and ° is the skew factor

that modelsnon-orthogonalu j v axes.

The extrinsic parametersthat represemn the cameraposition and orientation are given
by the 3£ 3 rotation matrix R and translation vectort which bring the camerareference

frame onto the world referenceframe.

A.2 Recti cation

Assuming eat of the camerasin the stereo-righas beencalibrated and therefore their
PPMs, P, and P, are known, the idea behind recti cation is to de ne two new PPMs
P.. and P, and de ning a rotation matrix R,¢y that transforms the original image
to conform with the new PPMs. The new PPMs are obtained by rotating the old ones
aroundtheir optical certres sothat the epipolar linesin the two imageplanesare parallel.
In addition, to have horizontal epipolar linesasis preferred,the baselineof the stereo-rig
must be parallel to the horizontal axesof the two cameras.The new camerasmust also
have the sameintrinsic parametersto ensurethat coupledpoints have the samevertical

coordinates.

The stepsfor obtaining R;e¢ given the baselineof the stereo-rig T and the rotation

R betweenthe left and right cameraviews are as follows:
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1. CHOOSE
T

o7 Tk

to make the epipole of the left cameraperpendicular to the optic axis

2. CHOOSE
[i Ty;Tx; 0T
g4

&=ef2=
T2+ T2

to make e perpendicularto both e; and the optic axis.
3. &s= e £ & (no choicehere)

4. CREATE the rotation matrix
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(A.3)

(A.4)

(A.5)

The points in the left image are remapped by applying the transformation R, and

points in the right image are remapped using R,.:R". The points from the original

imageplanewill not lie in the newimage plane sowe needto re-apply projection of f =2 °

to both imagetransformations.



App endix B

Simpli cation of Voting Function

In this appendix, we reproduce the discussionon the simpli cations madeto the voting
function in [?] and its e®ecton the disparity estimates.
The voting function in the original LWPC algorithm is computed as follows:

W) - 190X + &)l
W(x) - jOi(x)i2 W(X) - jOr(x)j?

Cj;s(X; é)= @ (B.1)

The voting function C at location x for a candidate disparity of ¢, is computed by con-
volving the Gaussianwindow W (x) with the inner product of O;(x) and O7(x + ¢),
where O,(x) is the complex-alued G2/H2 Tter output for the left imageand O7(x + ¢)
is the conjugate of the right image G2/H2 Tter output shifted by ¢ pixels horizortally.
The result is then divided by squareroot of corvolution of W (x) with the squareof the
amplitude of both O;(x) and (O (x).

In practice, only the real part of C(x; ¢) needsto be computed becauseat the true
disparity the real part is at its maximum and the imaginary part is closeto zero. The
disparity is then estimatedby nding the peakin the real part of C(x; ¢). The Gaussian
window, w, and denominator in Equation B.1 are always real-valued. The real part of

O (X)(O7(x + ¢)) is computed as follows:

<[O(X)O/(x + ] = <[OX)I<[Or (x + & i =[O1(X)]=[Or (X + ¢)] (B.2)
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The hardware architecture for computing <[C(x; ¢)] is illustrated in Figure B.1. It
requires seven multipliers, one squareroot block, one divider, three addersand three
Gaussianwindowing blocks. A parallel implemertation requires multiple implemerta-
tions of this block. A phase-correlationunit that covers an epipolar seart area of p
pixels at a singletime instancerequiresp copiesof this block at Scalel, dp=2e at Scale2,
and dp=de at Scale4 for ead of the three orientations. An epipolar seard band of twenty
pixels would then require 105 of these voting function blocks and any savings madein

the logic resourceusageof the voting function block will be magni ed 105times.

Re(Ol)
ol | Ol |"2
w @@
Im(Ql)
Gaussian Window
Re(c)
Re[Ol.0r*] Divider
W
Gaussian Window w * (Re[Ol]Re[0r]  Im[OIim[Or])
sart(Cw * [Ol] [{w * |Or| ])
Re(Or)
Or | Or |2
W
Im(Or)
Gaussian Window

Figure B.1: Realisation of the real part of the original voting function. Courtesy of [?].

The approadt takenin [?] is illustrated in Figure B.2. The Gaussianwindow is rst
moved to after the divider block resulting in one Gaussianwindowing block instead of
three per voting function block sothat for p = 20, the number of Gaussianwindow blocks
required are reducedto 105from 315. SinceGaussian Itering is a linear operation, they
further reducethe number of Gaussianwindow blocks required by performing Gaussian
‘Ttering on the sum of the correlation results from all three orientations. This reduces

the number of Gaussianwindow blocks requiredto 35.
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Figure B.2: Modi ed voting function unit with sharedGaussianwindow and normalisa-
tion unit. Courtesy of [?].

Normalisation is another resourceintensive operation. To adieve resourcesavings,
the normalisation block is moved outside the voting function unit sothat a single nor-
malisation unit is sharedacrossall voting function blocks. Further, the normalisation is
performedusing an L; norm instead of an L, norm. The L; norm of a 2-D vector A is
given by:

kAky = j<(A)j + = (A)] (B.3)

and the L, norm of the 2-D vector A is given by:

KAk, = <(A)2+ =(A)2: (B.4)

Table B.1 comparesthe number of blocks required with and without thesemodi ca-

tions. Sharing the normalisation block and changing the location of Gaussianwindow
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Original Mo di ed
Arc hitecture | Arc hitecture
Multipliers 735 210
Dividers 105 36
Square roots 105 -
Adders 210 123
Gaussian Windo ws 210 35

Table B.1: Summary of the number of basicblocks required for an epipolar seard band
of 20 pixels in three orientations for the original and modi ed voting function units.
Courtesy of [?].

reducesthe total number of multipliers, dividers and squareroots in the correlation unit
by over 65 %.

The e®ectsof these modi cation on the disparity map are showing in Figure B.3. The
stereoimagepair is showving in Figure B.3 (a) and (b). The depth map using the original
voting function unit is shavn in (c) and the depth map from the modi ed voting function
is showvn in (d). In most of the regions,the two maps have the samedepth values, but

the depth map in (d) cortains slightly more noisecomparedwith (c).
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(@) (b)

(©) (d)

Figure B.3: E®ectsof using L; norm instead of L, norm, sharing the normalisation
operation and changing the location of the Gaussianwindow on the nal depth map of
the "books' stereoimages. (a) Left image. (b) Right image. (c) Depth map from the
original voting function. (d) Depth map from the modi ed voting function. Courtesy of

[?].
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